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Abstract. Consensus Games (CGs) are a novel approach to modelling coali-
tion formation in multi-agent systems inspired by threshold models and quorum
sensing found in sociological and biological systems. In a consensus game, each
agent’s degree of commitment to the coalitions in which it may participate is ex-
pressed as a quorum function, and an agent is willing to participate in a coalition
if and only if a quorum consensus can be achieved by all the agents participat-
ing in the coalition. The computational complexity of several decision problems
associated with CGs is analysed and tractable algorithms for problems such as
determining whether a coalition is a consensus coalition are given.

1 Introduction

If the potential of multi-agent systems is to be realised it is essential that agents are able
to cooperate and coordinate their behaviours [1]. A crucial issue for agents when choos-
ing between alternative cooperative options is therefore determining which coalition to
join [2].

Coalition formation has traditionally been modelled using game theoretic tech-
niques; such models often necessitate strong economic assumptions. These include
the existence of a common, transferable utility, that valuations for each coalition can
be known, and that mechanisms for fair distribution of coalitional gains are in place.
The multi-agent community in particular have investigated coalition formation in cir-
cumstances where these economic assumptions cannot easily be applied. Examples of
such models include effectivity functions [3], where agents are interested in enforcing
a particular state, and qualitative coalitional games [2], where agents are interested in
achieving at least one of their goals. An assumption common to all of this work is that,
for a coalition to form, all member-agents must somehow ‘agree’ to its formation. In
other words, for a coalition to form it is necessary that there is a consensus amongst the
coalition’s members regarding the coalition’s formation.

Consensus has been extensively studied in the biological literature. For example,
many natural systems, including bacteria [4], ants [5], bees [6], and fish [7] exhibit a be-
haviour known as quorum sensing. Through a process termed the quorum response, the
probability of an individual selecting a particular behaviour is increasing in the propor-
tion of individuals already having made that choice. The macroscopic behaviour of this
self-organising system resembles one in which individuals converge upon consensus.
At a higher level of complexity, threshold models have been used to explain collective



behaviours in sociological systems. For example, in [8], a model is described in which
individuals are faced with the binary decision of whether or not to participate in a riot.
In this model each individual possesses an idiosyncratic threshold representing the min-
imum proportion of others which must participate in order that the given individual will
also participate. A population of n individuals is considered with uniformly distributed
thresholds { 0

n ,
1
n , . . . ,

n−1
n }; the scenario begins with a single instigator performing

some riotous display; this behaviour then incites the next, and so forth until mass riot-
ing ensues. Similar models have been found to describe a variety of social phenomena
including segregation in urban housing [9, 10], and the adoption of consumer trends
[11].

In this paper we propose consensus games (CGs), a novel model of consensual
coalition formation for multi-agent systems which draws inspiration from a consen-
sus mechanism found in biological and sociological systems. We extend the model
proposed in [8] beyond binary choice decisions to the more general problem of coali-
tion formation. For each coalition of which they may be a member, each agent holds
a threshold representing the proportion of agents from that coalition which must sup-
port the formation of the coalition in order that the agent will also support the coalition.
There is consensus about the formation of a particular coalition only where all member-
agents support the formation of that coalition.

The remainder of the paper is structured as follows. In the next section we intro-
duce the notion of a consensus game. In section 3 we define the notion of a strong
consensus coalition and in section 4 we consider collective rationality. In section 5 we
establish the complexity of some decision problems for consensus games. In section 6
we define another notion of consensus, weak consensus, and establish complexity of the
corresponding decision problems. We review related work in section 7 and conclude in
section 8.

2 Consensus Games

In this section we give a formal definition of a consensus game.

Definition 1. A consensus game (CG) is a tuple Γ = 〈G, q〉 where:

G is a finite set of agents, {1, . . . , n}, n ≥ 2.
q is a quorum function. It is a partial function q : G × 2G → [0, 1] which takes an

agent i ∈ G and a coalition of agents H such that i ∈ H and returns a number in
the interval [0, 1].

The value of the quorum function for a coalition indicates the agent’s ‘degree of sup-
port’ for the formation of that coalition.

For an agent i ∈ H ⊆ G the quorum function q(i,H) gives the minimum proportion
of agents in H which must support the formation of the coalition H in order that i will
support the formation of this coalition. Where q(i,H) = 0 agent i unconditionally
supports the formation of the coalition H , where 0 < q(i,H) ≤ |H|−1

|H| the agent

conditionally supports the formation of the coalition H; where |H|−1
|H| < q(i,H) ≤

1 the agent objects to the formation of the coalition H . We will use an abbreviation



q#(i,H) to denote the number of other agents from H which have to support H in
order for i to support H . Formally, q#(i,H) is the minimal natural number k such that
q(i,H) ≤ k/|H|. We will also denote the number of agents i ∈ H with q#(i,H) = k
by nk(H).

3 Strong Consensus

In this section we define the main solution concept of consensus games, a strong con-
sensus coalition. A strong consensus coalition H is a coalition where for each agent
i ∈ H the quorum threshold q(i,H) is satisfied in the sense that H contains at least q#
other agents with strictly lower q# values.

Definition 2. A coalition H is a strong consensus coalition if the following conditions
hold:

– n0(H) 6= 0
– if nk(H) 6= 0, then Σj<knj(H) ≥ k

Note that the definition implies that ifH is a strong consensus coalition, then n|H|(H) =
0.

Consider the following example.

Example 1. Alice (A) and Bob (B) are considering whether to get married. Bob no
longer wishes to be a bachelor and is keen to be married. Alice is not opposed to the
idea of marrying Bob provided that she knows that Bob also wants to marry her, other-
wise Alice will happily continue her single lifestyle. Alice’s and Bob’s positions can be
formalised as the consensus game Γ1 = 〈G, q〉 where:

G = {A,B}

q(i,H) =


0 if i = B and H = {A,B}
0.5 if i = A and H = {A,B}
1 if i = B and H = {B}
0 if i = A and H = {A}

In Example 1, Bob unconditionally supports the formation of the grand coalition
(of all agents); Alice conditionally supports formation of this coalition provided that
one other agent (Bob) also supports forming this coalition. Alice also unconditionally
supports formation of the singleton coalition {A}, whereas Bob objects to the formation
of the singleton coalition {B}. The grand coalition in this example is a strong consensus
coalition.

Next we show that there is an alternative definition of a strong consensus coalition
as a fixed point of a function which intuitively corresponds to agents indicating their
support for a coalition.

Consider the following function fH : 2G → 2G defined relative to H ⊆ G:

i ∈ fH(Q) iff i ∈ H and |Q ∩H \ {i}| ≥ q(i,H)× |H|



This function takes as its input a set Q ⊆ G and returns the set of agents in H whose
quorum thresholds are satisfied by the membership ofQ∩H . IfQ = ∅, fH will contain
only the agents i with q(i,H) = 0, if Q is the set of agents which have unconditional
support for H , then fH(Q) will contain the agents i with q#(i,H) ≤ |Q|, and so on.

We are going to show that a coalition H is a strong consensus coalition if and only
if it is the least fixed point of fH . First we need the following auxiliary result:

Proposition 1. The function fH is guaranteed to possess at least one fixed point.

Proof. Existence of at least one fixed point is guaranteed for monotonic functions;
Knaster-Tarski theorem [12].

For monotonicity it must be shown that ∀Q,Q′ ⊆ G where Q ⊆ Q′ it is always the
case that fH(Q) ⊆ fH(Q′).

Let Q ⊆ Q′. We need to show that for every i, if i ∈ fH(Q), then i ∈ fH(Q′).
Assume i ∈ fH(Q). By the definition of fH , i ∈ H and |Q∩H \{i}| ≥ q(i,H)×|H|.
Since Q ⊆ Q′, |Q′ ∩H \ {i}| ≥ |Q ∩H \ {i}| hence |Q′ ∩H \ {i}| ≥ q(i,H)× |H|
and i ∈ fH(Q′). ut

The least fixed point of a function can be established by recursive calls to the func-
tion starting with the empty set of agents as an argument; each invocation of fH will
be referred to as a round. If H can achieve least fixed point consensus, then it will be
achieved in at most |H| rounds.

Now we can prove

Theorem 1. H is a strong consensus coalition if and only if it is the least fixed point of
fH .

Proof. Assume H is a strong consensus coalition. Then n0(H) 6= 0 and |fH(∅)| =
|{i ∈ H : q#(i,H) = 0}| = n0, so fH(∅) 6= ∅. Similarly, at each round k > 1, fk

H(∅)
= fk−1

H (∅) ∪ {i ∈ H : q#(i,H) ≤ |fk−1
H (∅)|} (where fk

H is k applications of fH ). By
the definition of a strong consensus coalition, the set {i ∈ H : q#(i,H) ≤ |fk−1

H (∅)|}
is always non-empty until fk−1

H (∅) = |H|, so H is the least fixed point of fH .
Assume H is the least fixed point of fH . Then the first condition in the definition of

strong consensus coalition is satisfied because fH(∅) 6= ∅ hence there are agents i with
q(i,H) = 0. To show that for every k, if nk(H) 6= 0, then there are at least k agents
in H with strictly lower q# values, consider an agent i with q#(i,H) = k. Since H is
the least fixed point of fH , at some round m, i ∈ fm

H (∅). This means that |fm
H (∅)| ≥ k,

and since |fm
H (∅)| is the number of agents with lower q# values, Σj<knj(H) ≥ k. ut

4 The q-Minimal Core

The core is a popular solution concept in game theory, aggregating equilibria that are
both individually and collectively rational. In traditional, quantitative game theoretic
models, rational behaviour is typified by agents’ maximising some notion of utility.
Agents are said to act with individual rationality where each agent will achieve their
maximum reward given the behaviour of the other agents; this corresponds to the Nash



equilibrium of the game. Collectively rational outcomes are those where no subset of
agents can achieve a higher reward through unilateral defection.

By contrast, CGs are qualitative; they do not describe a pay-off or reward structure.
Instead, individually rational behaviour is associated with the quorum thresholds of the
agents for the coalitions of which they may be a member. It is individually rational for
an agent to support the formation of some coalition only if the number of agents already
known to be supporting that coalition is a least as great as the proportion specified by
the agent’s quorum threshold for that coalition.

Notions of equilibria constituting collectively rational outcomes for CGs are harder
to define. One natural way of distinguishing between coalitions is in terms of the effort
required to reach consensus. For some coalitions, strong consensus may be established
in a single round, while for others it may require as many as |H| rounds. The number of
rounds required to reach consensus for a given coalition can be taken as a quantitative
measure of the ease with which the agents reach consensus and the stability of the
resulting coalition.

Let rounds(H) be the number of rounds necessary for strong consensus to be es-
tablished for some coalition H . A q-minimal consensus coalition is a strong consensus
coalition of agentsH ⊆ G for which no subset of agents,H ′ ⊂ H , is also a strong con-
sensus coalition converging in strictly fewer rounds than rounds(H). The q-Minimal
Core aggregates q-minimal consensus coalitions.

5 Complexity of CGs

To characterise the computational complexity of CGs we consider three natural decision
problems associated with coalition formation. These decision problems address three
fundamental questions for CGs regarding the presence or otherwise of equilibria within
a game. The first considers the problem of verification, the second, that of existence
whist the third considers the matter of non-existence:

Consensus Coalition (CC): Can a given coalition reach consensus?
Consensus Coalition Exists (CE): Does there exist some coalition which can reach

consensus?
No Consensus Coalition (NC): Is there no coalition which can reach consensus?

These decision problems are considered, first for strong consensus coalitions and
subsequently for q-minimal consensus coalitions. To begin, the representational scheme
and abstract model of computation for these analyses are established.

5.1 Representation

When considering the representation of CGs the structure of most interest is the quorum
function, q. The quorum threshold has to be specified for each coalition H ∈ P(G) \ ∅
and for each agent i ∈ H . To do this, each coalition H ⊆ G is represented as a set of
pairs (i, q(i,H)). The overall representation is the set R = {rep(H) | H ∈ P(G) \ ∅},
where rep(H) = {(i, q(i,H)) | i ∈ H, q(i,H) ∈ [0, 1]}. Note that the size of R is
exponential in the number of agents n.



It is assumed that R is implemented as a random access data structure, hence, the
following results are given for the non-deterministic random access machine (NRAM)
model of computation [13].

5.2 Complexity of strong consensus decision problems

STRONG CONSENSUS COALITION (SCC).
Given a CG Γ = 〈G, q〉 and a coalition H ⊆ G, can H reach strong consensus?
A deterministic algorithm must verify that H is the least fixed point of fH . Algo-

rithm 1 runs in time which is polynomial (linear) in n and therefore lies within P (n).
Note that an O(n × log(n)) algorithm, which runs in constant space, can also be ob-
tained by sorting H on q(i,H).

Algorithm 1 Can H reach strong consensus.
function SCC(R, H)

array support[|H|+ 1]← {0, . . . , 0}
for all (i, q) ∈ H do

k ← dq × |H|e
support[k]← support[k] + 1

s← support[0]
for k from 1 to |H| do

if k ≤ s then
s← s + support[k]

else
return false

return true

STRONG CONSENSUS COALITION EXISTS (SCE).
Given a CG Γ = 〈G, q〉 is there some H ⊆ G which can reach strong consensus?
A deterministic algorithm would iterate over R, checking for each H ⊆ G whether

H is a strong consensus coalition. Hence the problem is in O(n2n).
A non-deterministic algorithm first guesses an index of a coalition H ∈ R and then

checks that that H can reach strong consensus. This can be done in time linear in n
using Algorithm 1. This gives a non-deterministic linear time algorithm for a random
access machine. Hence, the problem is in NP (n) for NRAM.

NO STRONG CONSENSUS COALITION (SNC).
Given a CG Γ = 〈G, q〉 is there no H ⊆ G which can reach strong consensus?
A deterministic algorithm must verify that ¬∃H ⊆ G such that H is the least fixed

point of fH . Hence the problem is in O(n2n).
The problem of verifying that there exists some coalition which can reach strong

consensus is in NP (n). Therefore the complement of that problem, verifying that there
exists no coalition which can reach strong consensus is in co-NP (n) for NRAM.



q-MINIMAL STRONG CONSENSUS COALITION (QM-SCC).
A deterministic algorithm must verify that H is the least fixed point of fH and that

¬∃H ′ ⊂ H such that H ′ is the least fixed point of fH′ and H ′ reach consensus in
strictly fewer rounds than H . Algorithm 2 computes the number of rounds required to
encounter the least fixed point of fH . The algorithm has time complexity O(n) and so
is in P (n).

Algorithm 2 Number of rounds for H .
function rounds(rep(H))

array support[|H|+ 1]← {0, . . . , 0}
for all (i, q) ∈ H do

k ← dq × |H|e
support[k]← support[k] + 1

r ← 0
i1← 1
i2← s← support[0]
while i1 ≤ i2 do

r ← r + 1
for k from i1 to i2 do

s← s + support[k]

i1← i2 + 1
i2← s

return r

Algorithm 3 then verifies that a given coalition, H is a q-minimal strong consensus
coalition, by iterating over all subsets of H . Hence the problem is in O(n2n).

Algorithm 3 Is H is a q-minimal strong consensus coalition.
function QM-SCC(H, R)

if ¬SCC(R, H) then
return false

for all H ′ ⊂ H ∈ R do
if SCC(R, H) ∧ rounds(H ′) < rounds(H) then

return false
return true

A non-deterministic algorithm to solve the complement of this problem (decide
whether a coalition is not a q-minimal consensus coalition) first checks whether H is
a strong consensus coalition (and returns true if it is not); if H is a strong consensus
coalition, it will guess an index of an coalition H ′ ⊂ H and check that H ′ is a strong
consensus coalition which converges in fewer rounds than for H (and returns false
if it does). So the problem of deciding whether a coalition is not a q-minimal strong



consensus coalition is in NP (n) on NRAM. Hence deciding whether a coalition is a
q-minimal strong consensus coalition is in co-NP (n) for NRAM.

q-MINIMAL STRONG CONSENSUS COALITION EXISTS (QM-SCE).
A deterministic algorithm must verify that ∃H ⊆ G such that H is the least fixed

point of fH and that ∀H ′ ⊂ H,¬∃H ′ such that H ′ is the least fixed point of fH′ and
H ′ reach consensus in strictly fewer rounds than H . Hence the problem is in O(n2n).

If there exists some coalition which is a strong consensus coalition then either that
coalition itself, or some subset of that coalition will be a q-minimal strong consensus
coalition. Therefore, this decision problem can be solved in a manner similar to SCE
and so is in NP (n) for NRAM.

NO q-MINIMAL STRONG CONSENSUS COALITION (QM-SNC).
A deterministic algorithm must verify that ¬∃H ⊆ G such that H is the least fixed

point of fH and that ∀H ′ ⊂ H,¬∃H ′ such that H ′ is the least fixed point of fH′ and
H ′ reach consensus in strictly fewer rounds than H . Hence the problem is in O(n2n).

If there exists some coalition which is a strong consensus coalition then either that
coalition itself, or some subset of that coalition will be a q-minimal strong consensus
coalition. Therefore, this decision problem can be solved in a manner similar to SNC
and so is in co-NP (n) for NRAM.

6 Weak consensus

The results from the previous section suggest that strong consensus is reasonably easy
(takes time linear in the number of agents) to reach. However, it may seem that there
is a notion of consensus that is even easier to reach, and which has the same intuitive
appeal as strong consensus. Namely, it is a notion of consensus corresponding to no
agent objecting to the formation of a coalition.

Definition 3. H is a weak consensus coalition if no agent i ∈ H has q(i,H) > |H|−1
|H| .

Interestingly, this notion of consensus also has a fixed point characterisation:

Theorem 2. H is a weak consensus coalition iff H is the greatest fixed point of fH .

Proof. The only if direction: if there exists i ∈ H such that q(i,H) > |H|−1
|H| , then by

the definition of fH , i 6∈ fH(H) so fH(H) 6= H .
For the if direction, assume that for all i ∈ H , q(i,H) > |H|−1

|H| . First we show that

fH(H) = H . By the definition of fH , any i ∈ fH(H) iff i ∈ H and q(i,H) ≤ |H|−1
|H| .

Since the latter holds for all i ∈ H , we have i ∈ fH(H) iff i ∈ H hence H is a fixed
point.

It is also the greatest fixed point, since the definition implies that fH(H ′) ⊆ H for
any H ′, so fH(H ′) ⊂ H ′ for any H ′ ⊃ H . ut

An example is called for:



Example 2. Consider again Example 1. However, let us now assume that both Alice
and Bob conditionally support getting married. Alice’s and Bob’s positions can be for-
malised as the consensus game Γ2 = 〈G, q〉 where:

G = {A,B}

q(i, G′) =


0.5 if i = A and G′ = {A,B}
0.5 if i = B and G′ = {A,B}
1 otherwise

In Example 2, both Alice and Bob will support formation of the grand coalition, and
so get married, if the other also supports this. As neither Alice nor Bob object to the
formation of the grand coalition, it is a weak consensus coalition.

Finally, it is easy to show that while every strong consensus coalition is also a weak
consensus coalition (since no strong consensus coalition can contain an agent that ob-
jects), the converse is not the case: there exists weak consensus coalitions which are
not strong consensus coalitions. Since fH(J) = H for any J ⊇ H , it follows that if
H is the least fixed point of fH , then it is also the greatest fixed point of fH . One such
coalition is the grand coalition in Example 2.

6.1 The H-Minimal Core

The agents in a weak consensus coalition reach consensus in a single round. The ana-
logue of a q-minimal consensus coalition is therefore not informative for weak consen-
sus.

Instead we adopt a similar approach to the qualitative model of the core introduced
in [2] for qualitative coalitional games (QCG). A coalition is in the qualitative core of a
QCG if and only if that coalition is stable and no subset of that coalition is also stable.
Consider two stable coalitions, H ⊆ G and H ′ ⊂ H . Qualitatively speaking, agents
in the coalition H ′ can do no better by forming H ′ than they would by participating in
the larger coalition H; however, by the same rationale agents in H ′ will do no worse by
forming this smaller coalition. In [2] it is argued that the existence of the stable coalition
H ′ undermines the stability of H; there is nothing impelling H to remain together.

Building on this qualitative definition of the core where collective rationality is as-
sociated with minimality, we define an H-minimal consensus coalition as a weak con-
sensus coalition of agents H ⊆ G for which no subset, H ′ ⊂ H , of agents is also
a weak consensus coalition. Following [2], the H-minimal core of a CG is defined as
containing only H-minimal consensus coalitions. The H-minimal core aggregates con-
sensus coalitions which are collectively rational in the sense that they are immune to
defection by some agents H ′ ⊂ H .

6.2 Complexity of weak consensus decision problems

In the remainder of this section, we look at decision problems for weak consensus and
H-minimal consensus coalitions.



WEAK CONSENSUS COALITION (WCC).
This first decision problem considers the complexity of determining if a given coali-

tion is a weak consensus coalition. Given a CG Γ = 〈G, q〉 and a coalition H ⊆ G,
will H reach weak consensus?

A deterministic algorithm must verify that ¬∃i ∈ H such that q(i,H) > |H|−1
|H|

(from Theorem 2). It simply iterates through rep(H) checking that no agent i has
q(i,H) > |H|−1

|H| . Hence the problem is in O(n).

WEAK CONSENSUS COALITION EXISTS (WCE).
Given a CG Γ = 〈G, q〉 will any H ⊆ G reach weak consensus?
A deterministic algorithm must verify that ∃H ∈ R such that ¬∃i ∈ H such that

q(i,H) > |H|−1
|H| . Hence the problem is in O(n2n).

A non-deterministic algorithm first guesses an index of a coalition H ∈ R and then
checks that thatH can reach weak consensus. This can be done in time linear in n. This
gives a non-deterministic linear time algorithm for a random access machine. Hence,
the problem is in NP (n) for NRAM.

NO WEAK CONSENSUS COALITION (WNC).
Given a CG Γ = 〈G, q〉 can no H ⊆ G reach weak consensus?
A deterministic algorithm must verify that ¬∃H ∈ R such that ¬∃i ∈ H such that

q(i,H) > |H|−1
|H| . Hence the problem is in O(n2n).

The problem of verifying that there exists some coalition which can reach weak
consensus is in NP (n) (from WCE). Therefore the complement of that problem, ver-
ifying that there exists no coalition which can reach weak consensus consensus is in
co-NP (n) for NRAM.

H -MINIMAL WEAK CONSENSUS COALITION (GM-WCC).
Given a CG Γ = 〈G, q〉 and a coalition H ⊆ G, is H a H-minimal weak consensus

coalition?
A deterministic algorithm must verify that H a weak consensus coalition and that

¬∃H ′ ⊂ H such that H ′ is also a weak consensus coalition. Hence the problem is in
O(n2n).

A non-deterministic algorithm to solve the complement of this problem (decide
whether a coalition is not a H-minimal weak consensus coalition) first checks whether
H is a weak consensus coalition (and returns true if it is not); if H is a weak consensus
coalition, it will guess an index of an coalition H ′ ∈ R \ H and check that H ′ is a
weak consensus coalition. So the problem of deciding whether a coalition is not an H-
minimal weak consensus coalition is in NP(n) on NRAM. Hence deciding whether a
coalition is an H-minimal weak consensus coalition is in co-NP (n) for NRAM.

H -MINIMAL WEAK CONSENSUS COALITION EXISTS (GM-WCE).
Given a CG Γ = 〈G, q〉 is some H ⊆ G a H-minimal weak consensus coalition?



A deterministic algorithm must verify that ∃H ⊆ G such that H is a weak con-
sensus coalition and that ¬∃H ′ ⊂ H such that H ′ is also a weak consensus coalition.
Hence the problem is in O(n2n).

If there exists some coalition which is a weak consensus coalition then either that
coalition itself, or some subset of that coalition will be an H-minimal weak consensus
coalition. Therefore, this decision problem can be solved in a manner similar to WCE
and so is in NP (n) for NRAM.

NO H -MINIMAL WEAK CONSENSUS COALITION (GM-WNC).
Given a CG Γ = 〈G, q〉 is there noH ⊆ G aH-minimal weak consensus coalition?
A deterministic algorithm must verify that ¬∃H ⊆ G such that H an H-minimal

weak consensus coalition. Hence the problem is in O(n2n).
If there exists some coalition which is a weak consensus coalition then either that

coalition itself, or some subset of that coalition will be a H-minimal weak consensus
coalition. Therefore, this decision problem can be solved in a manner similar to WNC
and so is in co-NP (n) for NRAM.

7 Related Work

The central proposition of CGs is that agents’ choices are conditioned by the number of
other agents also making some choice; this resembles the premise of congestion games
[14], a type of potential game [15]. Although in these games players do not seek to
make agreements or form coalitions, they do aim to minimise costs which in turn are
dependent on the choices of the other players. The strategies of the players each describe
a set of primary factors, or resources, utilised in that strategy. The cost to each player for
the use of each resource is dependent upon the number of other players also choosing
a strategy requiring that resource. It has been shown [14] that every congestion game
possesses at least one Nash equilibrium in pure strategies.

CGs also resemble aspects of anonymous games [16] in which the individual util-
ity of participation in some coalition is independent of the identities of the agents con-
cerned. In such situations other factors, including the size of the coalition become deter-
minants of an agent’s choice. In general, however, CGs are non-anonymous therefore,
for example, an agent could object (q(i,H) = 1) to participation in any coalition in
which some other, specific, agent participates.

The notion that an agent’s behaviour may influence that of others is also found in
imitation games [17] where two players take the roles of leader and follower; through
the payoff structure the follower is motivated to act in consensus with the leader. In
the terminology of CGs the leader has a quorum threshold of zero, and the follower
has a quorum threshold of at most one half. McLennan and Tourky [17] find that the
complexity of computing Nash equilibria in such games is no less than for the general
two-player case, i.e., is PPAD-complete [18]. The problem of computing (existence
of) equilibria in CGs is thus no more complex than it is for normal form games. The
problem of verifying equilibria in CGs can be solved in time which is polynomial in
the number of agents, whereas, the problem of verifying equilibria for normal form



games requires time which is polynomial in the product of the number of players and
of alternative strategies [19].

The notion of weak consensus resembles aspects of hedonic games [20]. For weak
consensus the quorum thresholds of agent i can be understood as partitioning the set
of coalitions containing i into those which i is willing to join and those which it is
not. These latter coalitions are identified as those to which the agent objects. Agents
in hedonic games have a complete, reflexive and transitive preference relation over
those coalitions to which they may belong. Hence, for a CG under weak consensus
a corresponding, simple, hedonic game can be constructed where agents are indifferent
amongst those coalitions H ⊆ G where q(i,H) ≤ |H|−1

|H| but strictly prefer these to
coalitions where this inequality does not hold.

CGs have some similarities to Qualitative Coalitional Games [2]. It is therefore
interesting to compare CGs and QCGs, especially with respect to the size of represen-
tation and the complexity of similar decision problems.

A QCG Γ may be represented as an (n+ 3) tuple Γ = 〈G,Ag,G1 . . .Gn,V〉 where
Gi ⊆ G represents each agent’s i ∈ Ag set of goals and V : 2Ag → 22G

is the character-
istic function of the game mapping each possible coalition of agents to the sets of goals
that coalition can achieve. In QCGs:

– A set of goals G′ ⊆ G is feasible for a coalition C ⊆ Ag if G′ ∈ V(C).
– A set of goals G′ ⊆ G satisfies an agent i ∈ C ⊆ Ag if G′ ∩ Gi 6= ∅.
– A coalition C ⊆ Ag is successful if there exists some set of goals G′ ⊆ G such that

G′ is feasible for C and G′ satisfies at least all agents i ∈ C.

There is no immediate direct correspondence between goals in QCGs and quorum
thresholds in CGs, apart from an intuition that the agent may have a lower quorum
threshold for a coalition if it is more likely to achieve the agent’s goals. However, the
parallels between successful coalitions in QCGs and consensus coalitions in CGs are
clearer: both capture the notion of it being rational for an agent to join a coalition. The
worst case size of the game representation for QCGs is the characteristic function where
each coalition can enforce any subset of goals. There are 2n coalitions and 2m subsets
of goals, so the worst case size of V is O(2n+m). For CGs, the representation is ex-
ponential in n. Complexity results for QCGs in [2] are given as a function of the size
of representation, where the characteristic function is represented by a propositional
formula Ψ (which as noted may be exponential in the number of agents and goals,
but generally will be more concise than a naive representation of V ). The successful
coalition problem is NP in the size of the representation. This corresponds to our SCC
and WCC problems which are linear in the number of agents (hence also in the size of
representation).

8 Conclusions and future work

Consensus games are a novel approach to the problem of coalition formation in multi-
agent systems. We have presented two solution concepts for CGs, corresponding to the
least and greatest fixed points of fH . Weak consensus resembles the threshold model
presented by Chwe in [21] whilst strong consensus resembles the model presented by



Granovetter in [8]. The two solution concepts of strong and weak consensus repre-
sent different approaches to reaching consensus. Weak consensus requires fewer rounds
(namely, one) to reach consensus compared to strong consensus, and allows consensus
to be reached for a strictly larger range of quorum values: all strong consensus coalitions
are weak consensus coalitions but not vice versa.

CGs bring together these two approaches to threshold modelling and, in particular,
they focus on the special case of consensus, an important aspect of threshold models
which has not been previously considered. CGs apply threshold models to the problem
of coalition formation and so develop notions of collective rationality and coalitional
stability for threshold models; problems which have not been addressed by previous
work.

Our work is the first to consider computational aspects of threshold models. We
have analysed the complexity of several decision problems for CGs under both individ-
ually and collectively rational solution concepts for both strong and weak notions of
consensus; these results are summarised in Table 1. Whilst these membership results do
not require technically demanding proofs they do represent important and fundamen-
tal computational questions concerning the verification, existence and non-existence of
stable coalitions in CGs. In particular, we have shown that verification of both strong
and weak consensus coalitions can be achieved in time that is polynomial (linear) in the
number of agents. These results may help to explain why it is that threshold behaviours
are so prevalent in both biological and sociological systems.

Table 1. Summary of complexity results (upper bounds). Note that we assume random access to
indices in R, so the complexity classes are for NRAM.

Strong Consensus q-minimal Weak Consensus H-minimal

Verification (CC) P (n) co-NP (n) P (n) co-NP (n)
Existence (CE) NP (n) NP (n) NP (n) NP (n)
Non-existence (NC) co-NP (n) co-NP (n) co-NP (n) co-NP (n)

CGs as presented here treat the problem of coalition formation in an abstract sense.
It is often the case that coalition formation in multi-agent systems is directed toward
the achievement of goals. It would be interesting to study decision problems for CGs
extended to include representations of collective action and heterogeneous goals. The
work of Chwe [21] considers the mechanics and epistemics of threshold models where
communication is not necessarily global; this also seems a fertile area for future work.
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