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ABSTRACT
A key problem for Belief-Desire-Intention (BDI) agents is intention
progression, i.e., which plans should be selected and how the ex-

ecution of these plans should be interleaved so as to achieve the

agent’s goals. Monte-Carlo Tree Search (MCTS) has been shown

to be a promising approach to the intention progression problem,

out-performing other approaches in the literature. However, MCTS

relies on runtime simulation of possible interleavings of the plans

in each intention, which may be computationally costly. In this pa-

per, we introduce the notion of quantitative summary information
which can be used to estimate the likelihood of conflicts between

an agent’s intentions. We show how offline simulation can be used

to precompute quantitative summary information prior to execu-

tion of the agent’s program, and how the precomputed summary

information can be used at runtime to guide the expansion of the

MCTS search tree and avoid unnecessary runtime simulation. We

compare the performance of our approach with standard MCTS

in a range of scenarios of increasing difficulty. The results suggest

our approach can significantly improve the efficiency of MCTS in

terms of the number of runtime simulations performed.
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1 INTRODUCTION
In Belief-Desire-Intention-based (BDI) agents [14] the behaviour

of an agent is specified in terms of beliefs, goals, and plans. Beliefs
represent the agent’s information about the environment (and it-

self), goals represent desired states of the environment the agent

is trying to bring about, and plans are the means by which the

agent can achieve its goals. Plans consist of primitive actions that

directly change the state of the environment, and subgoals which

are in turn achieved by subplans. When the agent commits to a

particular plan to achieve a (top-level) goal, an intention is formed.

At each deliberation cycle, the agent chooses which of its multiple

intentions it should progress (i.e., intention selection) and, if the
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next step within the selected intention is a subgoal, chooses the best

plan to achieve it (i.e., plan selection). These two choices together

form the intention progression problem [13].

An agent typically pursues multiple goals in parallel. In many

BDI agent programming languages and platforms, by default, the

intentions for each of the agent’s top-level goals are progressed

in round robin fashion, i.e., at each deliberation cycle, the next

step of the next intention in sequence is executed [2, 32]. The

resulting interleaving of steps in plans in different intentions may

result in conflicts, i.e., the execution of a step in one plan may

make the execution of a step in another concurrently executing

plan impossible. Most languages allow a developer to over-ride the

default scheduling behaviour to avoid conflicts, e.g., by over-riding

a method or by writing a meta-plan. However, it is difficult for

the developer to anticipate all possible conflicts in advance, and it

would be desirable for the agent to solve the intention progression

problem itself, i.e., which plans should be selected and how the

execution of these plans should be interleaved so as to achieve the

agent’s goals without conflicts.

A number of approaches to various aspects of the intention

progression problem have been proposed in the literature, includ-

ing, summary-information-based (SI) [21, 22], coverage-based (CB)

[29, 30] and Monte-Carlo Tree Search-based (MCTS) [35–37] ap-

proaches. In [37] Yao et al. showed that the MCTS-based approach

SA out-performed round robin, first in first out, SI, and CB intention

progression in static and dynamic environments, both in synthetic

domains and a more realistic scenario based on the Miconic-10 ele-

vator domain [12]. However, SA relies on runtime pseudorandom

simulations of different interleavings of the plans in each intention

to determine which intention to progress at the current delibera-

tion cycle. Random simulation has the advantage that all possible

interleavings have a probability of being explored. However the

random nature of the simulations often results in the generation

of many “obviously bad” interleavings, which is computationally

costly. If the computational budget is (too) small, the performance

of MCTS can be unstable in problems with a large search space,

such as intention progression [33].

In this paper, we showhow the computational overhead ofMCTS-

based scheduling approaches can be reduced using summary infor-

mation. Summary information was introduced in [22] as a way of

characterising the definite and potential pre- and post-conditions of

different ways of achieving a goal. Using this information, a sched-

uler could decide to, e.g., delay progressing an intention, if doing

so would necessarily result in a conflict with another intention.

The summary information in [21–23, 37] is represented as boolean

combinations of definite and potential pre- and postconditions, and



is essentially qualitative, that is, it does not consider the likelihood

that a precondition will be required or a postcondition will be es-

tablished. As a result, it becomes less informative as the agent’s

program grows in complexity — with more ways of achieving a

goal, very few pre- and postconditions are definite, and many pre-

and postconditions become potential. Moreover, the size of the sum-

mary information itself grows exponentially with the complexity

of the agent’s program. (Computing it also takes exponential time,

but this is done offline.)

We introduce the notion of quantitative summary information

which can be used to estimate the likelihood of conflicts between

an agent’s intentions. We show how offline simulation can be used

to precompute quantitative summary information prior to execu-

tion of the agent’s program, and how the precomputed summary

information can be used at runtime to guide the expansion of the

MCTS search tree and avoid unnecessary runtime simulation. We

compare the performance of our approach with standard MCTS

in a range of scenarios of increasing difficulty. The results suggest

our approach can significantly improve the efficiency of MCTS in

terms of the number of runtime simulations performed.

2 PRELIMINARIES
In this section, we briefly recall the definition of a goal-plan tree

that forms the foundation of our approach, and formally define the

intention progression problem.

2.1 Goal-Plan Trees
We use the notion of goal-plan trees [21, 22, 34] to represent the

relations between goals, plans and actions, and to reason about the

interactions between intentions. The root of a GPT is a goal node

д, its children are plan nodes that can be used to achieve д. Each
plan node contains a sequence of action nodes and (sub)goal nodes.

The subgoals have their associated plans as their children, giving

rise to a tree structure representing all possible ways an agent can

achieve the top-level goal д.

Figure 1: Example goal-plan tree.

Figure 1 shows a simple goal-plan tree. The top level goal, G0

can be achieved by two plans, P0 and P2, and can be seen as an “OR”

node, in that the agent has a choice of which plan to use. The plan

P0 consists of a single action, A0, and a subgoal G1. Plan nodes can

be seen as “AND” nodes, in that, if P0 is selected, action A0 must

be executed and G1 must be achieved.

To allow reasoning about interactions between intentions, a goal

plan tree records information about the conditions necessary to

achieve a (sub)goal or successfully execute a plan or an action in

the form of pre- and post-conditions associated with goal, plan and

action nodes. Preconditions are conditions that must be true in order

to execute a plan or an action. Postconditions are conditions that are
made true by executing a plan or an action or by achieving a goal

(in addition to achieving the goal itself). For simplicity, in what

follows, we assume that pre- and postconditions are sets of literals.

For example, the action A3 in Figure 1 may have p0 as precondition
and {p1,p2} as postcondition, A4 may have p1 as precondition and

p3 as postcondition, and action A5 in plan P3 may have {p2,p3} as
precondition. That is, preceding steps establish preconditions for

later steps.

2.2 Intention Progression Problem
The intentions of an agent at each deliberation cycle are represented

by a pair I = (T , S ) whereT = {t1, . . . , tn } is a set of goal-plan trees

and S = {s1, . . . , sn } is a set of pointers to the current step of each ti .
Each si is initially set to the root goal of ti , дi . We define next (si ) as
the successor of si in a pre-order traversal of ti (i.e., if si is the last
step in a plan π , then next (si ) is the next step in the parent plan of π ),
and nexta (si ) as the first action step of ti following si . If next (si ) is
an action, nexta (si ) = next (si ). If si is a (top-level) goal or next (si )
is a subgoal, determining the next action step involves choosing a

plan π for the (sub-)goal and returning the first action step in π (if

the first step in π is again a subgoal, then we also need to choose

a plan to achieve it and so on). A current step si is progressable if
there exists an action a = nexta (si ) whose precondition holds.

The intention progression problem (IPP) [13] is that of choosing

a current step si ∈ S to progress (i.e., advance to nexta (si )) at
each deliberation cycle so as to maximise the agent’s utility. There

are many ways in which utility may be defined, e.g., taking into

account the importance or priority of goals, the deadlines by which

goals should be achieved, the ‘fairness’ or order in which goals are

achieved, the costs or preferences of actions, etc. For concreteness,

in what follows we assume that the agent’s utility is maximised by

achieving the largest number of goals.

3 QUANTITATIVE SUMMARY INFORMATION
In this section, we introduce the notion of quantitative summary

information and explain how it can be computed.

3.1 Fragile and Establishing Ratios
We define quantitative summary information in terms of possible

executions of the plans an agent may use to achieve its goals. A

trace is a sequence of primitive actions corresponding to a possible

execution of a plan for a goal. Traces are generated by expanding the

subgoals in the plan and the plans for those subgoals recursively.

The set of execution traces, traces(π ), induced by a plan π in a

goal-plan tree is given by:

traces(π ) = {a | a = expand (e1), . . . , expand (ek )}

where π = e1, . . . , ek and

expand (a) = a

expand (д) ∈ traces(π ′) where π ′ ∈ plans(д)



where a is a primitive action, д is a subgoal and plans(д) is the set
of plans available to achieve д. A trace σ = a1, . . . ,an is coherent if,
for every pair of steps ai , ak such that i < k , ai has a postcondition
∼l , ak has a precondition l , there exists aj with i < j < k such that

aj has postcondition l . We stipulate that each trace σ ∈ traces(π )
is coherent.

We characterise traces in terms of the fragility and establishment

of literals. We denote by L(T ) the set of literals l such that l appears
in the postcondition of a goal, plan or action inT , and ∼l appears in
the precondition of a plan or action inT . A literal l ∈ L(T ) is fragile
on an interval [i, j] of a trace a1, . . . ,an , iff l is a postcondition of a

step ai , a precondition of a step aj , and no ak with i < k < j has
l as a postcondition. Intuitively, a literal l is fragile in an interval

where it is established but not yet used, and may be clobbered by

another interleaved intention that establishes ∼l . A special case is

when l is true at the beginning of the plan (e.g., l is a precondition
of the plan which is true in the environment) and is used for the

first time by some aj , then l is fragile during the interval [0, j].
To characterise fragility of a literal l on a trace, we only consider

maximal intervals where l is fragile, that is, if l is established by

step i and then used by steps j and j ′, where j < j ′, without being
re-established before j ′, we only consider the interval [i, j ′]. The
notion of an interval where l is fragile is similar to the notion of

preparatory effects (p-effects) defined in [22]. However we extend

the notion of p-effect in [22] to include the establishment of the

precondition of an action by a previous action in the same plan,

and to include ‘unestablished preconditions’, i.e., dependencies on

prior execution or the environment.

The length of an interval [i, j] is j − i + 1. We define the fragile
ratio of l for a plan π , fr (l ,π ), as the ratio of the sum of lengths of

the intervals where l is fragile on all traces of π to the total length

of all traces of π ,

fr (l ,π ) =
Σσ ∈traces(π ),[i, j]∈F (l,σ ) (j − i + 1)

Σσ ∈traces(π )lenдth(σ )

where for σ = a1, . . . ,an , F (l ,σ ) = {[i, j] | l ∈ post (ai ) ∧ l ∈
pre (aj ) ∧ ¬∃k (i < k < j ∧ l ∈ post (ak )) ∧ ¬∃j

′(i < j < j ′ ∧ l ∈
pre (aj′ ) ∧¬∃k

′(i < k ′ < j ′ ∧ l ∈ post (ak ′ )))}. The fragile ratio can
be seen as a measure of a plan’s robustness: the larger the fragile

ratio for l , the more likely interleaving steps from plans in other

intentions will destroy (clobber) a fragile precondition l .
We define the fragile ratio of l for a goal д, fr (l ,д) in terms of the

fragile ratios of the plans for д,

fr (l ,д) =
Σπ ∈plans(д),σ ∈traces(π ),[i, j]∈F (l,σ ) (j − i + 1)

Σπ ∈plans(д),σ ∈traces(π )lenдth(σ )

We also define a complementary notion of an establishing ratio.

Given a trace a1, . . . ,an , a step ak , 1 ≤ k ≤ n is establishing wrt to

a literal l ∈ L(T ) iff l is a postcondition of ak . For a plan π and a

literal l , the establishing ratio of l on π , er (l ,π ), is the ratio of the

number of steps establishing l on all traces of π , to the total length

of all traces of π :

er (l ,π ) =
Σσ ∈traces(π )E (l ,σ )

Σσ ∈traces(π )lenдth(σ )

where E (l ,σ ) is the number of steps establishing l on σ . The es-
tablishing ratio can be seen as a measure of a plan’s potential to

conflict with plans in other intentions: the larger the establishing

ratio for a literal l , the more likely interleaving steps from this plan

will destroy a fragile precondition ∼ l in another intention.

As for fragility, we define the establishing ratio of l for a goal д,
er (l ,д) in terms of the establishing ratios of the plans for д,

er (l ,д) =
Σπ ∈plans(д),σ ∈traces(π )E (l ,σ )

Σπ ∈plans(д),σ ∈traces(π )lenдth(σ )

3.2 Complexity
As with qualitative summary information, we wish to compute and

store quantitative summary information for each goal and plan

node in a goal-plan tree so that it can be used at runtime to guide

the scheduling of intentions. However, as we show next, computing

the fragile and establishing ratios for plans (and hence for goals) is

computationally costly.

Proposition 3.1. Computing fr (l ,д) can be done using space
polynomial in the GPT representation of plans(д).

Proof. To show that fr (l ,д) can be computed in PSPACE in the

size of plans(д), observe that each σ ∈ traces(π ) for π ∈ plans(д)
is linear in the size of π (since it is a concatenation of a subset of

branches in π ) hence it is linear in the size of plans(д). The number

of traces in traces(π ) in exponential in the size of π , however for
each σ we can compute Σ

[i, j]∈F (l,σ ) (j − i + 1) one at a time using

polynomial amount of space, and keep a running proportion of total

length of fragile intervals to the total length of traces explored so

far. Note that the values for the numerator and denominator (sum

of lengths of traces) may be exponential in the size of plans(д), but
they can be represented in binary using only polynomial amount of

space. We can keep track of where we are in plans(д) by placing a

pointer on a node in a goal-plan tree, again using only polynomial

space. □

In the next theorem, we show that the problem of computing

fr (l ,д) is ♯P-hard. The complexity class ♯P contains function form

problems that involve counting solutions to NP problems [24].

Clearly a solution to the problem of counting satisfying assign-

ments is also a solution to the boolean satisfiability problem, so it

is at least as hard as an NP-complete problem. This means that it is

not possible to compute fr (l ,д) in polynomial time in the size of

the GPT for д, unless FP=♯P, where FP is the set of function form

problems solvable in polynomial time. FP=♯P would entail P=NP,

which is unlikely.

Theorem 3.2. The problem of computing fr (l ,д) is ♯P-hard.

Proof. We reduce the ♯P-complete problem of counting the

number of satisfying assignments for a formula in 3CNF to comput-

ing fr (l ,д). We build on the proof sketch in [20], which shows that

the problem of whether there exists an execution of a given GPT is

NP-complete by constructing a GPT corresponding to a 3CNF for-

mula and showing that the formula is satisfiable if and only if there

is an execution of (coherent trace of a plan in) a corresponding GPT.

As in [20], we construct a GPT corresponding to a 3CNF formula

ϕ over n variables, that has two plans. One plan is essentially the

same as the encoding of ϕ in [20], however each execution of it

ends with an action that requires a propositional variable p that



does not occur in ϕ. This means that p is fragile in the entire exe-

cution corresponding to a satisfying assignment for ϕ. The second
plan makes sure that the GPT has an execution corresponding to

every one of 2
n
possible assignments to the variables in ϕ. The

second plan has traces corresponding to assignments satisfying ¬ϕ.
The variable p is not fragile on any of these traces. All executions

have the same length. Then ϕ has k/2n satisfying assignments iff

fr (p,д) = k/2n .
The top level goal д in the GPT has two plans, πϕ and π¬ϕ . First

we construct πϕ . Consider a 3CNF formula ϕ withm clauses. Each

clause ci , 1 ≤ i ≤ m, has three literals li1, li2, li3. In a satisfying

assignment for ϕ, at least one li j for each ci is made true. Following

[20], we model this by constructing πϕ which is a sequence of

subgoals, each corresponding to a clause ci in ϕ. Each subgoal

ci has three plans, each containing a single action li j intuitively
corresponding to setting the literal li j to true. In order to make

sure that only one of two literals q and ¬q can be set to true in an

execution of πϕ , each action li j requires li j as a precondition, and
also has it as a postcondition. So if we execute plan q for subgoal ci ,
we cannot execute plan ¬q for a subgoal c j occurring later in πϕ .
The last action in plans for subgoal cm (the last subgoal in πϕ ) ends
in an action p that requires p. Since no action establishes p earlier

in πϕ , p is fragile for the duration of any trace of πϕ . It is also clear

that any trace in traces(πϕ ) corresponds to a satisfying assignment

of ϕ (recall that we require traces to be coherent). The length of all

traces of πϕ is the same,m + 1 (where we executem actions, one

for each clause to set a literal to true, and one for p at the end).

For the second plan π¬ϕ we first compute a 3DNF representation

of ¬ϕ: it is a disjunction ofm conjuncts d1 ∨ . . . ∨ dm , where di is
(¬li1∧¬li2∧¬li3). In order to make ¬ϕ true, it is sufficient to make

one disjunct di true, and this means making all three literals in it

true. So π¬ϕ consists of a single subgoal s¬ϕ withm plans, and each

plan for di is a sequence of actions corresponding to ¬li1, ¬li2, ¬li3,
followed by the same sequence of lengthm − 2 trivial steps with
no preconditions (to make traces of π¬ϕ to be of the same length

as the traces of πϕ ). The variable p is not used in any subplans

of π¬ϕ and is not fragile on any intervals in those traces. Clearly

plans(д) have in total 2
n
traces, all of lengthm + 1, and all the ones

where p is fragile for allm + 1 steps correspond to the satisfying

assignments of ϕ. So the ϕ has k/2n satisfying assignments if, and

only if, fr (p,д) = (m + 1)k/(m + 1)2n = k/2n . □

Proposition 3.3. The problem of computing er (l ,д) is in PSPACE
and ♯P-hard.

The proof is similar to that for Proposition 3.1 and Theorem 3.2

and is omitted due to lack of space.

3.3 Estimating Fragile and Establishing Ratios
The high computational cost makes computation of precise quan-

titative summary information difficult, even in an offline setting.

We therefore adopt an approach based on sampling to estimate the

quantitative summary information for each goal and plan in an

agent’s goal-plan trees. For each plan π in a goal-plan tree ti ∈ T ,
we generate ν traces using pseudorandom simulation. As the sim-

ulations are performed offline, without knowledge of the agent’s

environment at runtime, we assume that all consistent environ-

ments are possible. That is, when performing the simulations, we

assume that any unestablished preconditions in a trace hold, e.g.,

they are established by a parent plan of π or are true in the envi-

ronment. As we require traces to be coherent, we are guaranteed

that each trace is executable in some (consistent) environment.

Given a set of traces R (π ) produced by pseudorandom simulation

of π , for each σ ∈ R (π ) and literal l ∈ L(T ), we compute the sum of

the lengths of the intervals where l is fragile, the number of times l
is established and the length of σ . We can then estimate the fragile

ratio of l for π , fr∗ (l ,π ), as

fr∗ (l ,π ) =
Σσ ∈R (π ),[i, j]∈F (l,σ ) (j − i + 1)

Σσ ∈R (π )lenдth(σ )

Similarly, we can estimate the establishing ratio of l onπ , er∗ (l ,π )
as

er∗ (l ,π ) =
Σσ ∈R (π )E (l ,σ )

Σσ ∈R (π )lenдth(σ )

The estimates of the fragile and establishing ratios for a goal д,
fr∗ (l ,д) and er∗ (l ,д) are computed from the sets of traces R (π ) for
each π ∈ plans(д) as follows

fr∗ (l ,д) =
Σπ ∈plans(д),σ ∈R (π ),[i, j]∈F (l,σ ) (j − i + 1)

Σπ ∈plans(д),σ ∈R (π )lenдth(σ )

er∗ (l ,д) =
Σπ ∈plans(д),σ ∈R (π )E (l ,σ )

Σπ ∈plans(д),σ ∈R (π )lenдth(σ )

Note that the offline computation of fr∗ and er∗ need only be per-
formed once: it is essentially a static analysis of the agent program

and forms part of the development phase rather than the execution

of the agent.

4 THE SQ SCHEDULER
In this section, we present SQ , an MCTS-based solver for intention

progression problems that uses quantitative summary information

to guide the expansion of the search tree and avoid unnecessary

runtime simulation. To choose which intention to progress, SQ
iteratively builds a search tree. Edges in the tree represent the choice

of a nexta (si ) for one of the agent’s intentions. Nodes represent
the state of the agent following the execution of the corresponding

action, that is, the agent’s beliefs updated with the postconditions of

the action, and the updated set of current step pointers. In addition,

each node also contains the current value of the node and a record

of the number of times it has been visited in the search (see below).

Algorithm 1 Return the action to be executed at the current cycle

1: function SQ (B, S, α, β, γ , δ )
2: n0 ← node0 (B, S )
3: for i ← 1, α do
4: ne ← max-uct-leaf-node(n0)
5: children(ne ) ← expand(ne )
6: ns ← random-child(children(ne ))
7: v (ns ) ← value(ns , β, γ , δ )
8: backup(ns , v (ns ))
9: return max-child(n0)



SQ is shown in Algorithm 1 and takes six parameters as input:

the agent’s current beliefs, B, the set of pointers to the current step

in each of the agent’s intentions, S , the number of nodes in the

MCTS search tree to be expanded at this cycle, α , the number of

runtime simulations that may be performed when a node is ex-

panded, β , and two threshold values γ and δ . As with MCTS and SA
[35], each iteration of the main loop consists of four main phases:

selection, expansion, simulation and back-propagation. However

the introduction of qualitative summary information requires sig-

nificant modifications to the simulation phase which are described

in detail below.

In the selection phase, a leaf node, ne is selected for expansion

(line 4). A node may be expanded if it represents a non-terminal

state (i.e., ∃si ∈ S (ne ) such that si is progressable). ne is selected

using a modified version of Upper Confidence bounds applied to

Trees (UCT) [16], which models the choice of node as a k-armed

bandit problem. Starting from the root node, we recursively follow

child nodes with highest UCT value until a leaf node is reached.

In the expansion phase, ne is expanded by adding a child node for
each nexta (si ) progressable in state s (ne ) representing the agent’s

beliefs resulting from executing nexta (si ) and the updated current

step pointer s ′i = nexta (si ) (line 5). That is, each child node cor-

responds to a different choice of which intention to progress at

this cycle, and, if next (si ) is a subgoal, how to progress it. One of

the newly created child nodes, ns , is then selected at random for

possible simulation (line 6).

In the simulation phase, the value of ns is estimated. The func-

tion value (see Algorithm 2) takes as argument ns , the number of

simulations we may perform, β , and the upper and lower bounds,

γ ,δ ,δ < γ , on the confidence interval within which runtime simu-

lation will be performed. We first compute quantitative summary

information for the agent’s intentions (line 3). Using the quantita-

tive summary information, we then compute the probability, p, of
achieving at leastm goals from the state represented by ns (line
5). If p is less than or equal to δ , we assume achievingm goals is

unlikely, and decrementm (line 7). If the probability of achievingm
goals is greater than or equal to γ , we returnm as the value of ns
(line 9). That is, if the probability of achievingm goals is sufficiently

low or sufficiently high, we “trust” the estimate based on qualitative

summary information and do not perform any runtime simulations.

Otherwise (i.e., δ < p < γ and we are uncertain whetherm goals

Algorithm 2 Return the value of node ns

1: function value(ns , β, γ , δ )
2: m ← lenдth (intentions (ns ))
3: Q ← qsi(intentions (ns ))
4: whilem ≥ 2 do
5: p ← goals-achieved(intentions (ns ), Q,m)
6: if p ≤ δ then
7: m ←m − 1
8: else if p ≥ γ then
9: returnm
10: else
11: m ← 0

12: for i ← 1, β do
13: m ← max(m, simulate(ns ))
14: returnm

can really be achieved from ns ) we perform β pseudorandom simu-

lations from ns as in standard MCTS. Starting in the environment

represented by ns , a nexta (si ) that is executable in s (ns ) is ran-
domly selected and executed, and the environment and the current

step of the selected goal-plan tree updated with s ′i = nexta (si ).
This process is repeated until a terminal state is reached in which

no next steps can be executed or all top-level goals are achieved.

The value of the simulation is taken to be the number of top-level

goals achieved in the terminal state. The maximum number of goals

achieved in any of the β simulations is returned as the value of ns
(lines 10–13).

To compute the fragile and establishing ratios for each of the

agent’s intentions ι at ns , the function qsi (see Algorithm 3) pro-

cesses each unexecuted step in each partially executed plan in ι,
accumulating an estimate of the total number of fragile and estab-

lishing steps, fs, es, for each literal l , and the average length of an

execution of ι, n. If a step ι (j ) is a subgoal, we use the fr∗ (l , ι (j ))
and er∗ (l , ι (j )) ratios multiplied by the average length of executions

of plans for ι (j ), ι (j )len , (computed offline) to estimate the number

of fragile and establishing steps for l required to achieve ι (j ), and
add these and ι (j )len to fs, es and n respectively. For actions, we

increment es if l is a postcondition of the action, keep track of the

number of action steps where l is fragile, r , and increment n. When

all steps have been processed, we divide fs and es by n to estimate

fr and er for l for ι. Note that computing fs, es and n involves only

arithmetic, and so is much less costly than runtime simulation.

The function goals-achieved (see Algorithm 4) uses the quan-

titative summary information for each intention to calculate the

maximum probability of the execution of a subset ofm intentions

being conflict free, i.e., of achievingm goals. For each pair of inten-

tions, ιi , ι j , and literal l ∈ L(T ), we compute the probability that a

step in ιi that is fragile on l will be clobbered by an establishing step
in ι j (ι j being clobbered by ιi is symmetric). The number of fragile

steps in ιi , fsi , is given by the fragile ratio for ιi , Qfr (l , ιi ), times

Algorithm 3 Return the QSI for the agent’s current intentions

1: function qsi(I )
2: Q ← ∅
3: for ι ∈ I do
4: for l ∈ L(T ) do
5: fs, es, n ← 0; r ← false
6: for j ← lenдth (ι ) − 1, 0 do
7: if goal-p(ι (j )) then
8: es ← es + (er ∗ (l, ι (j )) × ι (j )len )
9: fs ← fs + (f r ∗ (l, ι (j )) × ι (j )len )
10: n ← n + ι (j )len
11: else
12: if l ∈ post(ι (j )) then
13: es ← es + 1
14: r ← false
15: else if l ∈ pre(ι (j )) then
16: r ← true
17: if r then
18: fs ← fs + 1
19: n ← n + 1
20: Q (l, ι ) ← (fs/n, es/n, n)
21: return Q



Algorithm 4 Return the probability of achievingm top-level goals

1: function goals-achieved(I, Q,m)

2: p ← 0

3: for X ∈ {Y ⊆ I : |Y | =m } do
4: pX ← 1

5: for ιi , ι j ∈ X , ιi , ι j do
6: for l ∈ L(T ) do
7: fsi ← Qfs (l, ιi ) ×Qn (ιi )
8: esj ← Qes (l, ι j ) ×Qn (ι j )

9: c li, j ← 1 −
(
lenдth (ιj )−esj

fsi
)

(
lenдth (ιj )

fsi
)

10: pX ← pX × (1 − c li, j )

11: p ← max(p, pX )

12: return p

the average length of executions of ιi , Qn (ιi ), and the number of

establishing steps in ιi , esj , is given by the establishing ratio for ι j ,
Qer (l , ι j ) times the average length of executions of ι j , Qn (ι j ) (lines
7–8). We assume the worst case, that is, the fsi steps are contiguous
(constitute a single fragile region where l is established at the start

of the region and is used at the end), and that the fragile region is

at the start of intention ιi . We model ι j as a “bag” of steps, with
probability esj/lenдth(ι j ) that the next step in ι j is establishing. If
we are equally likely to chose a step from either intention when

forming the interleaving, then the probability that a step in ιi that

is fragile on l will be clobbered by an establishing step in ι j , c
l
i, j

is the probability of placing fsi steps in the interleaving without

drawing an establishing step from ι j (line 9). The probability that a

set X of intentions is conflict free, pX , is simply the probability that

for each pair of intentions ιi , ι j ∈ X and literal l ∈ L(T ) no conflict

occurs (line 10), and we return the maximum pX (lines 11–12).

In the back-propagation phase, the value is back-propagated

from ns to all nodes on the path to the root node n0 and the visit

counts of the nodes on this path are incremented. Note that we

increment the visit count for ns and its parent nodes regardless of

whether any runtime simulations were actually performed from

ns . That is, if the probability of achievingm goals estimated using

qualitative summary information is greater than γ , we effectively
treatm as the value we would have obtained had we performed

runtime simulation.

After α iterations, the step leading to the child of the root node

n0 which has the largest average simulation value (i.e., the largest

number of goals achieved compared to its siblings) is returned, and

the goal-plan trees and their associated current step pointers (one

of which has been updated) are assigned to I for use at the next
deliberation cycle.

5 EVALUATION
In this section, we evaluate the performance of SQ in a range of

scenarios of increasing difficulty. We compare the performance of

SQ with that of MCTS. The MCTS-based scheduler used in our

comparison is essentially the same as the SA scheduler described

in [35], except that it does not use coverage information to priori-

tise intentions which are more likely to become unexecutable in a

dynamic environment, and the utility function considers only the

number of goals achieved (as in SQ ) and does not consider fairness.

We evaluate the performance of SQ and MCTS on the number of

goals achieved, the number of runtime simulations required, and

the computation time required for each approach.

5.1 Experimental Setup
In the interests of generality, we evaluate SQ using sets of randomly-

generated, synthetic goal-plan trees representing the current inten-

tions of an agent in a simple environment. The synthetic trees are

similar to those used in the Intention Progression Competition
1
[13]

and in [35], except that the trees are not always balanced, i.e., not

all the leaf actions occur at the same depth. We conjecture that our

estimates of fragile and establishing ratios will give more accurate

results on perfectly balanced trees, since the average length of an

intention will be the same as the actual length. This may result in

enhanced performance of our approach on perfectly balanced trees,

and, in order to give unbiased comparison with the performance of

MCTS on arbitrary trees, we avoided the use of balanced trees.

The unbalanced trees were generated by introducing a new pa-

rameter, x , that specifies the probability of a plan being a leaf plan.

That is, rather than only generating leaf plans when the maximum

depth of the goal-plan tree is reached, a plan has probability x of

being a leaf plan, even when the current depth is smaller than the

maximum depth of the tree. An issue with unbalanced trees is that

the agent will favour short paths. To balance the difficulty of execu-

tions of different length, we increased the number of preconditions

on short paths, i.e., short paths are more likely to cause conflicts

when interleaved with other intentions. This seems reasonable —

in many cases the simplicity of a plan is inversely proportional to,

e.g., its resource cost.

In the experiments reported below, we vary the maximum depth,

d , of the goal-plan trees from 4 to 6, each goal has two relevant

plans, and each plan contains three actions and two subgoals. The

probability of a plan being a leaf plan was set to 0.2. The agent’s

environment is built from 60 propositions (corresponding to 120 lit-

erals). For each goal-plan tree, we select 30 propositions at random

and choose from the corresponding literals the pre- and postcondi-

tions of the actions in the tree. In each experiment, we generate 50

sets of 10 goal-plan trees with the parameters specified above.
2
The

fr∗ and er∗ ratios were calculated offline, by running 10000 random

simulations from each plan in each goal-plan tree.

The α parameter specifying the number of nodes expanded at

each deliberation cycle was set to 100 as in [35]. The β parameter

specifying the number of runtime simulations performed by MCTS

(and that may be performed by SQ ) was varied to create different

computational settings. SQ was configuredwithγ = 0.5 and δ = 0.1,

i.e., we only perform runtime simulations when the probability of

achievingm goals is in the range (0.1, 0.5). In all other cases, we

trust the quantitative summary information.

5.2 Experimental Results
To investigate whether the use of quantitative summary informa-

tion by SQ reduced the number of runtime simulations performed

1
https://www.intentionprogression.org/

2
The source code for SQ and goal-plan trees used in the experiments are available at

https://www.github.com/yvy714/SQ-MCTS.git

https://www.github.com/yvy714/SQ-MCTS.git


d (α , β) (100, 100) (100,10) (100,1)

4

MCTS

#goals 9.9 9.7 9

#sims 2.27 ×106 2.24 ×105 2.36 ×104

time 1406.1 289.6 45.2

SQ

#goals 9.9 9.8 9.2

#sims 1.04 ×106 1.10 ×105 1.14 ×104

#saved 1.23 ×106 1.13 ×105 1.22 ×104

time 899.7 229.6 185.1

5

MCTS

#goals 8.9 8.7 7.7

#sims 2.82 ×106 2.73 ×105 2.85 ×104

time 1603.4 352.0 55.6

SQ

#goals 9.6 9.1 8.9

#sims 1.22 ×106 1.13 ×105 1.23 ×104

#saved 1.60 ×106 1.60 ×105 1.61 ×104

time 1002.0 276.0 213.1

6

MCTS

#goals 7.5 6.6 5.6

#sims 4.04 ×106 3.85 ×105 3.07 ×104

time 1737.1 415.2 66.4

SQ

#goals 8.0 7.6 6.4

#sims 1.47 ×106 1.70 ×105 1.27 ×104

#saved 2.57 ×106 2.14 ×105 1.80 ×104

time 1121.1 317.8 230.9

Table 1: Goals achieved and runtime simulations with vary-
ing computational budget and problem difficulty.

and/or computation time, we considered three computational bud-

gets: β = 100, β = 10, and β = 1, and three levels of problem

difficulty: d = 4, d = 5, and d = 6. In Table 1, we report the average

(over 50 runs) number of goals achieved (#goals), average number

of runtime simulations required (#sims), and the average computa-

tion time for each approach in milliseconds (time). This is the time

required to return the first action to be executed, i.e., to compute

a complete interleaving of actions in all intentions starting from

the root of each goal-plan tree, and is essentially the worst case

for both approaches. As noted in [35], in a static environment, this

interleaving only needs to be recomputed when the agent adopts

a new top-level goal, so in the best case (no new top-level goals

during the execution of the current intentions) the computation

time is effectively amortised over the execution of all 10 intentions.

For SQ , we also report the average saving in runtime simulations

(#saved).
3

As can be seen, for goal-plan trees with a maximum depth of 4,

the number of goals achieved by both approaches declines as the

computational budget (number of runtime simulations) decreases.

However, SQ achieves at least as many goals as MCTS in all cases,

and requires approximately 50% of the runtime simulations required

by MCTS. (The (α = 100, β = 10) case represents the same compu-

tational budget used in [35], and the number of goals achieved in

this case indicates that the unbalanced trees with maximum depth 4

are of similar difficulty to the balanced trees of depth 5 used in [35]

to evaluate SA.) In the β = 100 and β = 10 cases, the reduction in

3
The average number of simulations and simulations saved are rounded to two signifi-

cant figures.

the number of runtime simulations results in a reduction in compu-

tation time of approximately 36% and 21% respectively. In the β = 1

case, the overhead of computing qualitative summary information

is significantly greater than the computation time saved by the

reduction in runtime simulations. However, with a small number

runtime simulations, the performance of MCTS can be unstable,

i.e., not only is the average solution quality lower, the variance in

the quality of solution returned is greater.

For goal-plan trees with maximum depth 5, the performance

of both approaches declines. (At this depth, the goal-plan trees

require about six times as many steps to achieve a top-level goal

as the GPTs in [35].) However the decline is more marked in the

case of MCTS, particularly for smaller values of β . Moreover, SQ
requires 43% and 41% of the runtime simulations required by MCTS

in the β = 100 and β = 10 cases, with a corresponding reduction

in computation time of 38% and 22%. As in the d = 4 case, when

β = 1, the overhead of computing qualitative summary information

is significantly greater than the computation time saved by the

reduction in runtime simulations. However, SQ can achieve approx-

imately the same number of goals with one simulation as MCTS

with 10 simulations, and in 61% of the computation time, indicating

that SQ is effectively exploiting qualitative summary information.

At d = 6, a similar pattern can be observed. The performance of

both approaches declines further, with a more marked reduction

in the case of MCTS. SQ requires only 36% and 44% of the runtime

simulations required by MCTS, with a corresponding reduction in

computation time of 36% and 24% in the β = 100 and β = 10 cases.

When β = 1, SQ can achieve approximately the same number of

goals as MCTS with β = 10, and in 56% of the computation time.

Our experiments did not consider the case of a dynamic envi-

ronment. However, we stress that SQ can handle exogenous events.

The fr∗ and er∗ values for GPTs are unaffected by changes to the en-
vironment, and the qsi and goals-achieved values are recomputed

at each cycle based on the actual progression of each intention

(which in turn is based on the agent’s current beliefs).

6 RELATEDWORK
In addition to the work of Thangarajah et al. [21–23] and Yao

et al. [35–37] discussed above, a number of other approaches to

scheduling intentions to avoid conflicts have been proposed in the

literature.

Waters et al. [29, 30] present a coverage-based approach to in-

tention selection proposed by [23], in which the intention with

the lowest coverage, i.e., the highest probability of becoming non-

executable due to changes in the environment, is selected for ex-

ecution. As in [21–23], intention selection is limited to the plan

level, and their experimental evaluation assumes that there are

no conflicts between intentions. Shaw and Bordini have proposed

approaches to intention selection based on Petri nets [18] and con-

straint logic programming [19]. Again, as in [21–23], the plans and

sub-goals in a goal-plan tree are regarded as basic steps, and in-

terleaving is at the level of sub-plans and subgoals. They do not

consider interactions between actions in plans.

The TÆMS (Task Analysis, Environment Modelling, and Sim-

ulation) framework [9] together with Design-To-Criteria (DTC)

scheduling [27] have been used in agent architectures such the



Soft Real-Time Agent Architecture [25] and AgentSpeak(XL) [1]

to schedule intentions. TÆMS provides a high-level framework

for specifying the expected quality, cost and duration of of meth-

ods (actions) and relationships between tasks (plans). DTC decides

which tasks to perform, how to perform them, and the order in

which they should be performed, so as to satisfy hard constraints

(e.g., deadlines) and maximise the agent’s objective function. DTC

can produce schedules which allow interleaved or parallel execu-

tion of tasks and can be used in an anytime fashion. In the work

closest to that presented here [1], DTC was used to schedule ex-

ecution of AgentSpeak intentions at the level of individual plans.

The TÆMS relations between plans required to generate a schedule

(enables, facilitates and hinders) were specified as part of the agent

program. In contrast SQ interleaves intentions at the level of ac-

tions, and information about possible conflicts between intentions

is extracted automatically from goal-plan trees generated from the

agent program.

In [15] Sardina et al. show how anHTN planner can be integrated

into a BDI agent architecture. However their focus is on finding

a hierarchical decomposition of a plan that is less likely to fail by

avoiding incorrect decisions at choice points, and they do not take

into account interactions with other concurrent intentions. In [31],

Wilkins et al. presented the Cypress architecture which combines

the the Procedural Reasoning System reactive executor PRS-CL,

and the SIPE-2 look-ahead planner. A Cypress agent uses PRS-CL to

pursue its intentions using a library of procedures (plans). If a failure

occurs during the execution of the plan due to an unanticipated

change in the agent’s environment, the executor calls SIPE-2 to

produce a new plan to achieve the goal, and continues executing

those portions of plans which are not affected. However, their

approach focusses on the generation of new plans to recover from

plan failures, rather than interleaving intentions so as to avoid

conflicts.

Among other approaches to deliberation about conflicts between

plans is the abstract programming language developed in [8] which

is inspired by the BOID architecture. In [28], an approach to run-

time conflict resolution between goals based on event calculus is

proposed and experimentally evaluated.

There has also been work on avoiding conflicts in a multi-agent

setting. For example, Clement and Durfee [4–6] propose an ap-

proach to coordinating concurrent hierarchical planning agents

using summary information and HTN planning. However in this

work, summary information is used to identify when conflicts may

arise between two or more agents rather than to avoid conflicts

between the intentions of a single agent. Moreover, it is assumed

that the agents plan offline in a static environment. In [11], Ephrahi

et al. present an approach to planning and interleaving the execu-

tion of tasks by multiple agents. The task of each agent is assigned

dynamically, and the execution of all tasks achieves a global goal.

They show how conflicts between intentions can be avoided by

appropriate scheduling of the actions of the agents. In [7] Dann et al.

extend the MCTS-based approach of Yao et al. [35] to a multi-agent

setting, in which agents consider not only interactions between

their own intentions but the intentions of other agents.

Visser et al. [26] have used summary information to reason about

preferences in BDI agents. They specify preferences over resources

and properties (e.g., payment-type, flight-class, hotel-rating etc.),

and use resource and property summary information to deliberate

over the selection of plans and the ordering of subgoals in a plan

when the ordering is not fixed by design, in order to maximise the

satisfaction of the agent’s preferences. Their approach however,

does not consider preference satisfaction across multiple intentions.

Many approaches to enhancing the performance of MCTS have

been proposed in the literature, both to reduce the search space

(for example pruning, analogously to α-β-pruning [10, 17]), and to

improve the performance of simulation, such as domain-specific

modifications to the default policy, backpropagation policy, paral-

lelisation, etc. [3]. Our approach does not change the MCTS search

space. Rather, it falls under enhancements to the simulation phase,

since during simulation we use information obtained off-line in or-

der avoid performing unnecessary computation. We are not aware

of similar approaches to simulation performance enhancement in

the MCTS literature. However, our approach can be used in combi-

nation with techniques such as [3, 10, 17] .

7 CONCLUSION
In this paper, we introduced the notion of quantitative summary in-

formation which can be used to estimate the likelihood of conflicts

between an agent’s intentions. We showed how offline simulation

can be used to precompute quantitative summary information prior

to execution of the agent’s program, and how the precomputed sum-

mary information can be used at runtime to guide the expansion

of the MCTS search tree and avoid unnecessary runtime simula-

tion. We compared the performance of our approach with standard

MCTS in a range of scenarios of increasing difficulty. The results

suggest our approach can reduce the number of runtime simula-

tions performed by up to 64% and the time required to schedule an

agent’s intentions by up to 38%.

In its current form, SQ considers only the non-executability of

intentions due to conflicts. In future work we plan to investigate

whether notions similar to coverage [23] can be incorporated into

quantitative summary information to estimate the probability of

unestablished fragile literals (i.e., unestablished preconditions) re-

sulting in the non-executability intentions.
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