
SP-MCTS-based Intention Scheduling for BDI Agents
Yuan Yao1 and Brian Logan1 and John Thangarajah2

1 INTRODUCTION
Arguably the dominant paradigm in agent development is the Belief-
Desire-Intention (BDI) model [?]. In BDI-based agent programming
languages, the behaviour of an agent is specified in terms of beliefs,
goals, and plans. Beliefs represent the agent’s information about the
environment (and itself). Goals represent desired states of the en-
vironment the agent is trying to bring about. Plans are the means
by which the agent can modify the environment in order to achieve
its goals. Plans may include sub-goals, and each sub-goal is in turn
achieved by some other plan. The set of plans is pre-defined by
the agent developer, and, together with the agent’s initial beliefs
and goals, form the program of the agent. The execution of a BDI
agent consists of a repeated cycle of: updating the agent’s beliefs and
goals to reflect the current state of the environment, selecting plans
to achieve the agent’s current (sub)goals based on the agent’s cur-
rent beliefs, and finally executing one or more steps of the agent’s
currently intended plans. For each top-level goal, the agent selects a
plan which forms the root of an intention, and commences the plan.
If the next step in an intention is a subgoal, a sub-plan is selected to
achieve the subgoal and pushed onto the intention, and the steps in
the sub-plan are then executed and so on. This process of repeatedly
choosing and executing plans is referred to the agent’s deliberation
cycle.

In many BDI agent architectures, the execution of the plans com-
prising the agent’s intentions is interleaved, e.g., when execution of
a plan in one intention reaches a subgoal, the agent may switch to
executing a plan in a different intention. Interactions between differ-
ent intentions may result in conflicts, e.g., where the execution of a
plan in one intention makes the execution of another plan in the same
or another intention impossible or renders a goal unachievable. The
task of anticipating and avoiding such conflicts is generally left to the
agent developer. However, the run-time plan selection characteristic
of BDI agents makes it difficult to anticipate all the ways in which an
agent program may be executed, and harder to ensure that conflicts
cannot arise. Ideally, the agent itself should be able to reason about
possible conflicts between its intentions, and schedule their execution
so as to avoid conflicts.

In this paper, we present a novel approach to intention schedul-
ing for BDI agents based on Single-Player Monte-Carlo Tree Search
(SP-MCTS) that avoids conflicts between intentions. We evaluate the
performance of our approach and compare it to a previous approach
to intention scheduling based on summary information [4]. Our pre-
liminary experimental results indicate that our approach performs at
least as well as approach to scheduling intention using summary in-
formation.
1 School of Computer Science, University of Nottingham, Nottingham UK,

email: {yvy,bsl}@cs.nott.ac.uk
2 School of Computer Science & Information Technology, RMIT University,

Melbourne, Australia, email: john.thangarajah@rmit.edu.au

2 SCHEDULING INTENTIONS
The plans to achieve a top-level goal of an agent naturally from a tree
structure termed a goal-plan tree [5, 4]. The root of a goal-plan tree
is the top-level goal, and its children are the plans that can be used to
achieve the goal. In general, there may be several alternative plans to
achieve a goal, hence, the child plan nodes are viewed as ‘OR’ nodes.
On the other hand, plan execution involves performing all the steps
in the plan. Thus, the children of a plan node are viewed as ‘AND’
nodes.

The execution of an intention to achieve a top-level goal amounts
to choosing a path through the corresponding goal-plan tree — a se-
quence of plans, subgoals and sub-plans, . . . that, when executed,
achieves the top-level goal. In general, to achieve a (sub)goal or suc-
cessfully execute a plan, certain conditions must hold in the agent’s
environment. We distinguish between preconditions (conditions that
must be true in order to execute a plan) and in-conditions (conditions
that must hold during the achievement of a goal or execution of a
plan). If an in-condition becomes false during the achievement of a
goal or execution of a plan, the goal or plan is dropped with failure.
For example, a plan to buy groceries may have the in-condition ‘at-
store’, and a precondition ‘have-money’. If an agent were to leave the
store during the execution of the plan, the plan would become unex-
cutable. Similarly, executing a plan or achieving a goal has effects in
the environment (in addition to achieving the goal itself). Note that,
as in In [5, 4], we abstract away from actions. The pre-conditions and
effects of actions are captured at the plan level rather than at the level
of the individual actions comprising the plan.

When executing a set of intentions, the interleaving of plans in
different goal-plan trees can give rise to conflicts between plans and
goals, e.g., if the the effects of a plan P1 in one goal-plan tree makes
the precondition of a plan P2 in another tree false before P2 is ex-
ecuted. The scheduling problem is the problem of choosing a path
through each goal-plan tree corresponding to one of the agent’s cur-
rent intentions, and an interleaving of the steps in these paths which
ensures that the preconditions of each plan on a path are true when
the plan begins execution, and that any in-conditions required by a
goal or plan are true during the achievement of the goal or execution
of the plan.

3 SINGLE-PLAYER MONTE-CARLO TREE
SEARCH-BASED SCHEDULING

Our approach to intention scheduling is based on Single-Player
Monte-Carlo Tree Search (SP-MCTS) [3]. SP-MCTS is a best-first
search in which pseudorandom simulations are used to guide expan-
sion of the search tree. It was originally developed to solve single-
player puzzles (games against the environment), e.g. SameGame [3],
however it has also been used successfully to solve reentrant schedul-
ing problems [2]. SP-MCTS is an anytime algorithm — it iteratively



builds a search tree until some pre-defined computational budget
(typically time, memory or number of expansions) is reached. The
algorithm then halts, and the best performing action is returned. Each
node in the search tree represents a state of the problem domain, and
also records information that is used to select nodes for expansion.
Edges represent actions leading to a subsequent state of the current
node.

In the remainder of this section, we describe our approach to in-
tention scheduling based on SP-MCTS. The input to the scheduling
algorithm is a set of goal-plan trees T representing the current in-
tentions of the agent, together with a set of condition variables C
representing the current state of the agent’s environment. Each goal-
plan tree in T is associated with a pointer to the ‘current step’ in the
tree, i.e., the point execution has reached in that goal-plan tree. The
current step may be a plan or a subgoal, and the path from the the root
of the goal-plan tree to the current step represents the choices made
(and steps executed) so far in achieving the top-level goal. When an
agent adopts an intention for a new top-level goal G, the current step
of the goal-plan tree for G is initially set to G itself. The output of
the scheduling algorithm is a next step of a goal-plan tree in T to be
executed at the current deliberation cycle. The step returned is ‘best’
in the sense that the execution of no other next step of a goal-plan
tree in T results in the achievement of a larger number of top-level
goals.

Each node in the SP-MCTS search tree records the current step
in each goal plan tree, and the state of the agent’s environment and
any active in-conditions resulting from the interleaved execution of
the previous steps in each goal-plan tree on the path to this node. In
addition, each node contains a record of the number of times it has
been visited, the highest value simulation from the node, and the sum
of all simulations from the node (see below).

Each iteration of the algorithm consists of 4 phases: selection, ex-
pansion, simulation and back-propagation.

Selection: in the selection phase, a leaf node, ne, of the SP-MCTS
search tree is selected for expansion. A node may be expanded if
it represents a non-terminal state (a state in which it is possible
to execute the next step of an intention). Nodes are selected using
a modified version of Upper Confidence bounds applied to Trees
(UCT) [3], which models the choice of node as a k-armed bandit
problem. Starting from the root node, we recursively follow child
nodes with highest UCT value until a leaf node is reached.

Expansion: In the expansion phase, the selected SP-MCTS node
ne is expanded by adding child SP-MCTS nodes representing the
states reachable by performing each next step of an intention pos-
sible in ne. Each child node therefore corresponds to a different
choice of which intention to execute at this deliberation cycle. A
next step is possible if the precondition of the step is true in the
environment of ne and the effects of the step do not violate the in-
conditions that are active at ne. Finally, one of the newly created
child nodes, ns, is selected at random for simulation in the next
phase.

Simulation: in the simulation phase, the ‘value’ of the SP-MCTS
node ns is estimated by performing a series of pseudorandom
simulations. Staring in the state representing by ns, we randomly
select a next step of an intention that can be executed in the envi-
ronment of ns and execute it, updating both the environment with
its effects and the ‘current step’ of the selected intention. We keep
doing this until no next steps can be executed or all top-level goals
are achieved. The resulting value of the simulation is taken to be
the number of top-level goals achieved by the random interleav-

ing of the next steps of the intentions. We repeat the simulation a
number of times (e.g., 100 times) and take the highest result as the
value for this node.

Back-propagation: the last step is to back-propagate the simulation
results for ns to all nodes on the path to the root node and update
their statistics. Any ancestor node with a value less than the value
of ns has their value replaced by the value of ns.

4 EVALUATION
To evaluate the performance of SP-MCTS-based intention schedul-
ing, we compared its performance to that of summary information-
based scheduling proposed by Thangarajah et al [4]. In summary
information-based scheduling, information is propagated up each
goal-plan tree to allow reasoning about interactions between trees.
For example, if a goal has two possible plan choices, and they both
bring about an effect e, then it is possible to infer that the effect e will
definitely occur as a result of achieving the goal, and that any other
goal or plan that brings about ¬e may cause a conflict. We generated
goal-plan trees similar to the ‘high level of interference’ case in [4].
Each experiment involved scheduling 20 goal-plan trees, and we ran
50 experiments. The SP-MCTS scheduler was configured to expand
1000 search nodes (1000 iterations), and perform 100 simulations
for each node. In all 50 trials, SP-MCTS was able to schedule exe-
cution of the goal-plan trees so as to achieve all the top-level goals.
For similar trees, scheduling using summary information is also able
to achieve all 20 goals. This suggests that SP-MCTS is at least no
worse than scheduling using summary information.

5 FUTURE WORK
As with summary information-based scheduling [5, 4] our current
SP-MCTS scheduler abstracts away from actions in plans — the pre-
conditions and effects of actions are captured at the plan level rather
than at the level of the individual actions comprising a plan. While
this reduces the number of points at which the execution of goal-
plan trees can be interleaved, in some cases it may be necessary to
interleave execution of intentions at the action level to achieve the
agent’s goals. In future work, we plan to investigate SP-MCTS-based
scheduling where actions are explicitly represented in the goal-plan
tree (scheduling in action level). We believe that SP-MCTS will out-
perform the approach based on summary information when actions
are represented as the goal-plan tree becomes much more complex.

REFERENCES
[1] Levente Kocsis and Csaba Szepesvári, ‘Bandit based Monte-Carlo plan-

ning’, in 17th European Conference on Machine Learning, eds., Jo-
hannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, pp. 282–
293, Berlin, Germany, (September 2006). Springer.

[2] Shimpei Matsumoto, Noriaki Hirosue, Kyohei Itonaga, Nobuyuki Ueno,
and Hiroaki Ishii, ‘Monte-Carlo tree search for a reentrant scheduling
problem’, in 40th International Conference on Computers and Industrial
Engineering (CIE), pp. 1–6, Awaji, (2010). IEEE.

[3] Maarten P. D. Schadd, Mark H. M. Winands, Mandy J. W. Tak, and
Jos W. H. M. Uiterwijk, ‘Single-player Monte-Carlo tree search for
SameGame’, Knowl.-Based Syst., 34, 3–11, (2012).

[4] John Thangarajah and Lin Padgham, ‘Computationally effective reason-
ing about goal interactions’, Journal of Automated Reasoning, 47(1), 17–
56, (2011).

[5] John Thangarajah, Lin Padgham, and Michael Winikoff, ‘Detecting &
avoiding interference between goals in intelligent agents’, in IJCAI-03,
Proceedings of the Eighteenth International Joint Conference on Arti-
ficial Intelligence, eds., Georg Gottlob and Toby Walsh, pp. 721–726,
Acapulco, Mexico, (August 2003). Morgan Kaufmann.


