
An Approach to Interest Management and Dynamic Load
Balancing in Distributed Simulation

Georgios Theodoropoulos
School of Computer Science
University of Birmingham
Birmingham, B15 2TT, UK
gkt@cs.bham.ac.uk

Brian Logan
School of Computer Science and IT

University of Nottingham
Nottingham NG8 1BB, UK
bsl@cs.nott.ac.uk

KEYWORDS

Distributed simulation, interest management, load balancing,
partitioning.

ABSTRACT The paper discusses the distributed simulation
of systems with large shared state and addresses issues re-
lated to interest management and dynamic load balancing.
It identifies the efficient partitioning and distribution of the
shared state as a key problem in such simulations and out-
lines a hierarchical multi-level interest management scheme
which facilitates dynamic load balancing.

1 Introduction

Various approaches for exploiting parallelism at dif-
ferent levels in simulation problems have been devel-
oped (Ferscha & Tripathi 1994). The Logical Process
Paradigm seeks to divide the simulation model into a
network of concurrentLogical Processes(LPs), each of
which models some object(s) or process(es) in the sim-
ulated system. Each LP maintains and processes a por-
tion of the state space of the system and state changes
are modelled as timestamped events in the simulation.
From an LP’s point of view, two types of events are dis-
tinguished; namely internal events which have a causal
impact only on the state variables of the LP, and exter-
nal events which may also have an impact on the states
of other LPs. External events are typically modelled as
timestamped messages exchanged between the LPs in-
volved. The purpose of this interaction is to exchange
information regarding the values of the state variables
which are of common interest to the LPs involved in
the communication (the shared state).

In conventional distributed simulations, the shared
state is typically small and the processes interact with
each other in a small number of well defined ways. The
topology of the simulation is determined by the topol-
ogy of the simulated system and its decomposition into
processes, and is largely static.

However, in the case of systems which operate in a
complex environment and interact with it in complex
and dynamic patterns (such as multi-agent systems, bat-
tlefield simulations, ecological systems, games etc.), it
is often difficult to determine an appropriate simula-
tion topology a priori. In such systems there is a very
large set of shared state variables which could, in prin-
ciple, be accessed or updated by the processes in the
model. Which variables the processes do in fact access
depends both on the state of the process and the state of
the processes simulating the environment. Encapsulat-
ing the shared state in a single process (e.g., via some
centralised scheme) introduces a bottleneck, while dis-
tributing it all across the LPs (in a decentralised, event
driven scheme) will typically result in frequent all-to-all
communication and broadcasting, which is extremely
costly and results in the loss of many of the advantages
of distributed simulation.

Therefore, what is required is an alternative approach
to decompose and distribute the shared state, which
minimises bottlenecks and broadcast communication
and by implication, maximises performance. Further-
more, the dynamically changing interaction patterns be-
tween the constituent parts of the simulated system and
between the system and its environment call for the dy-
namic reconfiguration of the simulation to balance the
load and sustain high performance.

This paper, which summarises our previous work on
distributed simulation of multi-agent systems, outlines



a conceptual unified framework which supports the ef-
ficient decomposition and distribution of the shared
state and facilitates load balancing. Issues addressed
in this paper have also been discussed in more detail
in (Theodoropoulos & Logan 1999b, Theodoropoulos
& Logan 1999a, Logan & Theodoropoulos 2000, Lo-
gan & Theodoropoulos n.d.).

2 Interest Management

The problem of avoiding broadcast communication has
been addressed mainly in the context of real-time large
scale simulations where it is termed Interest Manage-
ment (Morse 1996). Interest Management techniques
utilise filtering mechanisms based oninterest expres-
sions(IEs) to provide the processes in the simulation
with only that subset of information which is relevant to
them (e.g., based on their location or other application-
specific attributes). The data of interest to a process
is referred to as itsDomain of Interest(DOI). Special
entities in the simulation, referred to asInterest Man-
agers, are responsible for filtering generated data and
forwarding it to the interested processes based on their
IEs (Morse 1996). The region of the multi-dimensional
parameter space in which an Interest Manager is re-
sponsible for managing data transmission is referred to
as itsDomain of Responsibility(DOR).

Various Interest Management schemes have been de-
vised, utilising different communication models and fil-
tering schemes. In most existing systems, Interest Man-
agement is realised via the use of IP multicast address-
ing, whereby data is sent to a selected subnet of all
potential receivers. A multicast group is defined for
each message type, grid cell (spatial location) or region
in a multidimensional parameter space in the simula-
tion. Typically, the definition of the multicast groups
of receivers is static, based on a priori knowledge of
communication patterns between the processes in the
simulation (Smith, Russo & Schuette 1995, Mastaglio
& Callahan 1995, Macedonia, Zyda, Pratt & Barham
1995, Calvin, Chiang & Van Hook 1995, Steinman &
Weiland 1994). For example, the High Level Archi-
tecture (HLA) utilises therouting spaceconstruct, a
multi-dimensional coordinate system whereby simula-
tion federates express their interest in receiving data
(subscription regions) or declare their responsibility for
publishing data (update regions) (Def 1998). In existing
HLA implementations, the routing space is subdivided
into a predefined array of fixed size cells and each grid
cell is assigned a multicast group which remains fixed
throughout the simulation; a process joins those multi-
cast groups whose associated grid cells overlap the pro-
cess subscription region.

Static, grid-based Interest Management schemes
have the disadvantage that they do not adapt to the dy-
namic changes in the communication patterns between

the processes during the simulation and are therefore
incapable of balancing the communication and compu-
tational load, with the result that performance is of-
ten poor. Furthermore, in order to filter out all irrel-
evant data, grid-based filtering requires a reduced cell
size, which in turn implies an increase in the num-
ber of multicast groups, a limited resource with high
management overhead. Some early systems, such as
JPSD (Macedonia et al. 1995) and STOW-E (Van Hook,
Calvin, Newton & Fusco 1994) did exhibit some de-
gree of dynamism in their filtering schemes. More re-
cently, there have been a few attempts to define alter-
native dynamic schemes for Interest Management con-
centrating mainly on the dynamic configuration of mul-
ticast groups within the context of HLA. For exam-
ple, Berrached et al. (Berrached, Beheshti, Sirisaeng-
taksin & de Korvin 1998) examine hierarchical grid
implementations and a hybrid grid/clustering scheme
of update regions to dynamically reconfigure multicast
groups while Morse et al. (Morse, Bic, Dillencourt &
Tsai 1999) report on preliminary investigations of an al-
gorithm for dynamic multicast grouping for HLA. Sav-
ille et al. (Saville 1997) describe GRIDS, a generic run-
time infrastructure which utilises dynamic instantiation
of Java classes in order to achieve Interest Manage-
ment. The Joint MEASURE system (Hall, Zeigler &
Sarjoughian 1999, Hall 2000, Sarjoughian, Zeigler &
Hall 2000) is implemented on top of HLA and utilises
event distribution and predictive encounter controllers
to efficiently manage interactions among entities. How-
ever, despite these efforts, the problem of dynamic in-
terest management remains largely unsolved.

3 Load Balancing

The synchronisation mechanisms involved in dis-
tributed simulation render load balancing techniques
developed for other, more conventional classes of par-
allel applications insufficient. For instance, in the case
of optimistic synchronisation, high processor utilisation
does not necessarily imply good performance as oper-
ations could later be undone (rollback), while process
migration can affect the efficiency of the synchronisa-
tion mechanism (e.g., amount of roll backed compu-
tation). As a result, load balancing has been studied
extensively in the special context of both conservative
and optimistic parallel simulation (Burdorf & Marti
1993, Glazer & Tropper 1993, Goldberg 1992, Reiher
& Jefferson 1990, Schlagenhaft, Ruhwandl, Sporrer &
Bauer 1995, Carothers & Fujimoto 1996).

However, the issue of dynamic load balancing
has received very little attention in relation to in-
terest management and work in this area to date
is only preliminary (Morse 1996, Messina, Davis,
Brunette, Gottshock, Curkendall, Ekroot, Miller, Ple-
sea, Craymer, Siegel, Lawson, Fusco & Owen 1997,



White & Myjak 1998, Myjak, Sharp, Shu, Riehl,
Berkley, Nguyen, Camplin & Roche 1999).

In the next section we present a new unified frame-
work for dynamic interest management and load bal-
ancing.

4 A New Approach

Our approach is based on the notion ofspheres of In-
fluence, which are used to dynamically decompose and
distribute the shared state so that bottlenecks and broad-
cast communication are minimised. It utilises a dy-
namic, multi-level, hierarchical filtering scheme which
is not confined to grids and rectangular regions of multi-
dimensional parameter space nor does it rely on the sup-
port provided by the TCP/IP protocols. Furthermore,
our approach aims to exploit this decomposition in or-
der to perform dynamic load balancing.

4.1 Spheres of Influence

We assume that each Logical Process generates and re-
sponds to at most a finite number of event types. Differ-
ent types of events will typically have different effects
on other LPs, and, in general, events of a given type
will affect only certain types of state variables (all other
things being equal).

We define thesphere of influenceof an event as the
set of state variables read or updated as a consequence
of the event. The sphere of influence depends on the
type of event (e.g., sensor events or motion events), the
state of the LP which generated the event (e.g., its po-
sition in space) and the state of the environment. The
sphere of influence of an event is limited to theimme-
diateandpredictableconsequences of the event rather
than its ultimate effects, which depend both on the cur-
rent configuration of the environment and the actions of
other LPs in response to the event.

We can use the spheres of influence of the events gen-
erated by each LP to derive an idealised decomposition
of the shared state. We define the sphere of influence
of an LP,pi over the time interval[t1; t2], s(pi; [t1; t2]),
as the union of the spheres of influence of the events
generated by the process over the interval.

Intersecting the spheres of influence for each event
generated by the process gives a partial order over
sets of state variables for the process over the interval
[t1; t2], in which those sets of variables which have been
accessed by the largest number of events come first, fol-
lowed by those less frequently accessed, and so on.

Intersecting the spheres of influence for each process
gives a partial order over sets of state variables, the least
elements of which are those sets of state variables which
have been accessed by the largest groups of processes.
This partial order can be seen as a measure of the diffi-
culty of associating variables with a particular process:

the state variables which are members of the sets which
are first in the order are required by the largest number
of processes, whereas those sets of state variables which
come last are required by only a single process.

Any approach to the decomposition and distribution
of the shared state should, insofar as is possible, reflect
this ordering. However, any implementation can only
approximate this idealised decomposition, since calcu-
lating it requires information about the global environ-
ment, and obtaining this information would not be ef-
ficient in a distributed environment. Moreover, this or-
dering will change with time, as the state of the envi-
ronment and the relative number of events of each type
produced by the processes changes, and any implemen-
tation will have to trade off the cost of reorganising the
tree to reflect the ideal decomposition against the in-
crease in communication costs due to increased broad-
cast communication.

We are currently conducting experiments to charac-
terise the spheres of influence in a number of simula-
tions of agent-based systems. Out preliminary results
suggest that the proposed approach feasible. For more
detailed information and quantitative results the reader
is referred to (Logan & Theodoropoulos n.d.)

4.2 Dynamic State Distribution and Load
Balancing

The decomposition of the state is achieved by means of
an additional set of Logical Processes, namelyCommu-
nication Logical Processes(CLPs). The CLPs act as
Interest Managers. Each CLP maintains a subset of the
state variables and the interaction of ALPs and ELPs is
via the variables maintained by the CLPs. CLPs enable
the clustering of LPs with overlapping spheres of influ-
ence and facilitate load balancing. The partitioning of
the shared state is performed dynamically, in response
to the events generated by the LPs in the simulation.
Thus, the number and distribution of CLPs is not fixed,
but varies during the simulation.

We now sketch an algorithm for the decomposition
of the shared state into CLPs. Initially, the whole of the
shared state is handled by a single CLP, as depicted in
Figure 1(a). All read and update events from all LPs
are directed to this single CLP, as is all inter-process
communication.

As simulation progresses, the CLP performs a dy-
namic analysis of the pattern and frequency of state ac-
cesses and computes an approximation of the agents’
spheres of influence. If the load increases to the point
that the CLP becomes a bottleneck (e.g., when message
traffic exceeds a predefined threshold), the CLP creates
one or more new CLPs, to which it assigns those dis-
joint subsets of the state variables that form the least el-
ements in its approximation of the partial order over the
spheres of influence. Those groups of LPs whose events
and actions have formulated the new CLP(s) communi-
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Figure 1: Generating the tree of CLPs.

cate directly with the corresponding new CLP. The pro-
cess then repeats with the newly created CLP(s) mon-
itoring the load and generating additional CLPs as re-
quired to keep the overall simulation load on the CLPs
within bounds (Figure 1(b)).

This behaviour naturally leads to a tree structure,
where the LPs are the leaves and the CLPs the interme-
diate nodes of the tree. Events by the LPs which refer
to state variables not maintained by their parent CLP
will be routed through the tree to the appropriate CLP
node. This can be accomplished by recording in each
CLP routing information specifying which event types
are relevant to its child LPs and CLPs and to its parent
CLP.

The rank of a variablevj for processpi over the in-
terval [t1; t2], r(vj ; pi; [t1; t2]) is the number of events
in whose sphere of influencevj lies. We define the cost
of accessing a variablevj for a logical processpi as the
rank ofvj for pi, r(vj ; pi), times the number of CLPs
which must be traversed to reachvj during the interval
[t1; t2], l(vj ; pi), i.e., the cost of accessing variables in
the local CLP is 0. Then the cost to an LPpi of ac-
cessing all the variables in its sphere of influences(pi)
is: X

vj2s(pi)

l(vj ; pi)� r(vj ; pi)

and the total access cost for all LPsp1; : : : ; pn of a par-

ticular decomposition over the interval[t1; t2] is:

X

i=1

n X

vj2s(pi)

l(vj ; pi)� r(vj ; pi)

The optimal decomposition over the interval[t1; t2] is
one which minimises the total access cost.

As the total number and distribution of instances of
each event type generated by an LP varies, so the par-
tial order over the spheres of influence changes, and the
structure of the tree must change accordingly to reflect
the LPs’ current behaviour and keep the communication
and computational load balanced. This may be achieved
in two ways, namely by changing the position of the LP
in the tree, or by relocating state in the tree. State may
be relocated either by moving subsets of the state vari-
ables from one CLP to another, or by merging CLPs
upwards and then (possibly) splitting them again in a
different way.

For example, Figures 2(a) and 2(b) illustrate the mi-
gration of LP1 in the tree, to bring it closer to the part
of the state it most frequently accesses (denoted by the
shaded area in CLP2). If this reduces the load handled
by CLP1 sufficiently, it can be merged with CLP0, as
depicted in Figure 2(c). Alternatively, the subset of state
variables accessed by LP1 in CLP2 could have been
moved to CLP1.

5 Open Issues

A number of challenging issues have to be addressed
before this approach is realised. Techniques are re-
quired to obtain global snapshots of the distributed sim-
ulation and approximate the spheres of influence at any
instant, e.g. (Chandy & Lamport 1985, Babaoglou &
Marzullo 1993). Furthermore, algorithms for redis-
tributing the state and reorganising the tree to approx-
imate the spheres of influence and balance the load to
achieve high simulation performance must be devel-
oped; in this context appropriate performance metrics
and cost functions need to be defined which will take
into account all relevant characteristics of both the host
platform (e.g. network configuration, CPU and mem-
ory architecture etc.) and the dynamics of the simu-
lated systems (e.g. frequency of interactions and state
accesses etc.). To this end, a range of alternative solu-
tions may be envisioned, from the periodic redistribu-
tion of the whole state and construction of the tree from
scratch to the gradual moving of LPs and state variables
through different levels in the dynamically reconfigured
tree.

CLPs should be able to respond to various
events/queries issued by the LPs regarding shared state.
As the state information required to respond to these
may be distributed through the tree, appropriate routing
algorithms are needed to enable the CLPs to locate this
information; this is clearly highly non-trivial.
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Figure 2: LP migration and merging of CLPs.

The proposed framework in intended to support both
conservative and optimistic synchronisation protocols.
To date, most work on Interest Management has been
carried out within the context of large-scale, real-time
simulations where synchronisation is straightforward,
as at any instant, all processes (federates) are approx-
imately at the same wall-clock time. In logical time
simulations however, where different LPs will typically
be at different logical times, interest management can
introduce temporal coherency errors in the simulation
(e.g., processes do not receive messages they ‘should’
have received). Thus far, only a limited amount of
work has been done in this area, mainly for HLA and
similar grid-based filtering schemes (Tacic & Fujimoto
1998, Steinman & Weiland 1994).

In (Theodoropoulos & Logan 1999a, Theodoropou-
los & Logan 1999b, Logan & Theodoropoulos 2000)
we have outlined possible solutions to some of the
above issues, however more work is needed to address
all these problems.

6 Summary

In this paper we have addressed issues related to the
distributed simulation of systems with a large state
space shared between their constituent parts. The ef-
ficient partitioning of this shared state is a key problem
which calls for new and innovative interest management
and load balancing schemes. We have described an
approach to hierarchical, multi-level dynamic interest
management which uses the notion of ‘spheres of influ-
ence’ as a basis for dynamically partitioning the shared
state of the simulation model into logical processes, and
we have described an algorithm for dynamically parti-
tioning the simulation to perform load balancing. This
is work in progress and we have identified a number of
challenging issues which have to be addressed before
our approach is realised.
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