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1 Introduction
An ontology is a description of a particular domain in terms of its
concepts and relationships. Ontologies can be used by ‘intelligent
agents’ to model their environment and communicate with other
agents. The quality of ontologies are therefore crucial to the per-
formance of intelligent agents. However, as with any other knowl-
edge base, there is always the possibility that an ontology have some
semantic defects. This abstract presents an approach to ontology
debugging using ideas borrowed from Truth Maintenance Systems
(TMS).

2 Ontology Debugging
This section briefly introduces the key problems in ontology debug-
ging and briefly outlines some of the major work in the field. Firstly,
we provide basic definitions of incoherence and inconsistency of a
DL-based ontology.

Definition 1. An ontology is incoherent iff there is at least one un-
satisfiable concept in its TBox.

Definition 2. An ontology is inconsistent iff there is no model for it.

Generally speaking, the incoherence problem deals with concept-
unsatisfiabilty within the TBox while an inconsistency problem also
involves assertional axioms.2 Ontology debugging is the process of
identifying bugs and producing repair plans for an incoherent or in-
consistent ontology. Most work has been done in ontology debugging
is for the incoherence problem (i.e., debugging and repair of unsatis-
fiable concepts) although recently the problem of inconsistency has
also been investigated.

Basically, the process of debugging ontology has two parts. The
first is to identify which sets of axioms (or parts of axioms) are re-
sponsible for an unsatisfiable concept or an inconsistency. The next
step is to propose how can these axioms be modified to make the
concept satisfiable, or to restore consistency to the Knowledge Base
(KB) with respect to some particular criteria.

Two main approaches to pinpointing problematic axioms have
been proposed in the literature: glass-box and black-box. Glass-box
methods, e.g., [6, 7, 8, 9], use tableau-like rules to pinpoint the prob-
lematic axioms (concepts). These approaches obviously depend on a
particular DL, as they have to modify the tableau rules to store and
retrieve the sources of errors. Black-box methods on the other hand,
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2 Note that the satisfiability checking problem in TBox can be reduced to a
consistency checking problem by trying to construct a model for a concept
using tableau rules.

e.g., [6, 11, 4], are reasoner-independent, since they only use the rea-
soner as an external component to diagnose whether an a concept is
satisfiable with respect to a particular T-Box (or KB in the case of
inconsistency problem). There are also hybrid approaches, e.g., [5],
which combine both glass box and black box approaches.

In this paper, the rules which we employ to create the dependency
graph are similar to the classical tableau rules, as in some of the glass-
box approaches, e.g.,[7, 8].

3 Truth Maintenance Systems

Truth Maintenance Systems (TMS), e.g., [3], also known as Belief
Revision Systems or Reason Maintenance Systems, play a central
role in a style of belief revision called foundational belief revision.
A TMS keeps track of dependencies between data to maintain the
consistency of a database. A TMS consists of a set datum nodes
and the justifications for them. A justification can be considered as a
record of an inference, linking a datum node with the datum nodes
used to derive it. Using these recorded dependencies, a TMS allows a
problem-solver to quickly determine which nodes are “responsible”
for belief in a particular datum.

According to [10], a TMS performs three main tasks: 1) given an
assertion, find the assertions or assumptions used to derive it; 2) given
a set of assumptions, find all the assertions can be derived from them;
and 3) delete an assertion and all the consequences which have been
derived from it. These tasks are also relevant to the problem of on-
tology debugging. For example, tracing the sources S1 and S2 of the
assertions A(x) and ¬A(x), where A is a concept name and x is
an individual in the ontology, gives the source of the contradiction
(or clash) S1 ∪ S2. Similarly, if one can find a minimal set of as-
sumptions from which the contradictory assertions were derived, the
minimal set of axioms which are the cause for the clash can also be
identified.3 This set corresponds to a MUPS in [9], or a justification
for concept unsatisfiability defined in [5].

4 Using ATMS for Ontology Debugging

One particular type of TMS is an Assumption-based TMS (ATMS)
[1]. In an ATMS, each node is associated with the set of sets of as-
sumptions used to derive it, as well as the datum nodes that constitute
its immediate antecedents. These sets of assumptions are termed en-
vironments, and are always kept minimal and consistent. In this way,
backtracking is avoided and multiple solutions can be found at the
same time.

3 In the literature of ontology debugging, the idea of tagging an assertion with
the axioms used to derive it has also been proposed in [7, 8].



In this section, we present an approach to ontology debugging us-
ing an ATMS. We focus on the problem of axiom pinpointing for an
unsatisfiable concept (i.e., finding a set of axioms responsible for a
unsatisfiably concept), and for simplicity, we only consider the un-
foldableALC TBOX without disjunctions.4 We show how the ATMS
can be used to detect contradictions and to pinpoint sets of problem-
atic axioms.

As a reasoner can easily detect that a concept is unsatisfiable by
a satisfiability check, the key problem is to identify the sources of
the unsatisfiability. This is the task of the ATMS. An ATMS node
Ndatum is of the form: 〈datum, label , justifications〉, where da-
tum is an assertion such as Ai(a), label is a set of environments
(explained below), and justifications are the sets of nodes that di-
rectly derive Ndatum. Since there are many ways a datum can be
derived, it is possible to have multiple justifications for a particular
node. The ATMS distinguishes two special types of datum nodes:
assumptions and premises. Assumptions are foundational data. Each
environment in the label of a (non-assumption) datum node com-
prises a set of assumptions from which the datum can consistently be
derived. Premises are similar to assumptions, but are taken to hold
universally, and are not explicitly represented in environments. The
task of the ATMS is to ensure that each node label is consistent,
sound, complete and minimal. As the reasoner informs the ATMS
of new datum nodes and justifications, the ATMS label propagation
algorithms update the labels of previously asserted nodes to remove
any subsumed environments (in the case of a normal justification),
or any environments which subsume an environment (in the case of
a new justification for the distinguished node N⊥ which represents
contradiction).

The ontology debugging problem can be mapped onto the opera-
tions of the ATMS in a straightforward way. Each TBOX axiom is
represented by an ATMS assumption. For concreteness, we assume a
TBOX Γ = {ax1, . . . , axn}, where each axiom axi is of the form:
Ai v Ci and all concept descriptions are in negation normal form
(NNF). The assumption that each concept is non-empty, e.g., Ai(c)
for some constant c, is represented by an ATMS premise. The rea-
soner uses standard rules of inference to infer new concept instances
from some consistent set of datum nodes (i.e., nodes whose labels do
not subsume the label of N⊥). A suitable list of rules that can be used
by the reasoner to infer new justifications is shown in Figure 1. The
process of creating the dependency graph terminates when no rule
can be applied to any node of the graph. At this point, each environ-
ment of a node Ndatum is a minimal set of axioms that can used to
derive datum, and the label of N⊥ consists of sets of axioms respon-
sible for clashes. In addition, the information given by justifications
for nodes can be used to pinpoint the parts of axioms , e.g., concepts
causing the clashes.

In conclusion, there is a clear mapping between the functionality
provided by the ATMS and the problems of ontology debugging, and
we believe that a systematic investigation of the practicality of using
an ATMS for ontology debugging is a fruitful direction for future
research.
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Figure 1. Rules for creating and updating nodes in the dependency graph
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