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Abstract

To select an appropriate tool or tools to build an agent-based
system we need to map from features of agent systems to im-
plementation technologies. In this paper we propose a sim-
ple scheme for classifying agent systems. Starting from the
notion of an agent as a cluster concept, we motivate an ap-
proach to classification based on the identification of features
of agent systems, and use this to generate a high level taxon-
omy. We illustrate how the scheme can be applied by means
of some simple examples, and argue that our approach can
form the first step in developing a methodology for the selec-
tion of implementation technologies.

Introduction
The conventional approach to developing an agent system
involves defining a theory of the agent(s) which comprise the
system, devising an architecture which realises the theory
and finally implementing this architecture, possibly using a
toolkit which supports the theory or architecture (see, for
example, (Fisheret al. 1997)). In this view, agent theories
are essentially formal specifications of the behaviour of an
agent system in terms of the properties of an agent and how
to represent and reason about these properties. The agent
architecture is a specification of a set of software and/or
hardware components which together satisfy the properties
specified by the agent theory. The architecture is in turn im-
plemented in real hardware and/or software developed using
languages which may directly embody principles of the the-
ory or tool(kit)s which provide direct support for the archi-
tecture (Wooldridge & Jennings 1995).

While it has much to commend it, this approach is often
difficult or impossible to apply in practice, either because
the theory makes assumptions which cannot be met by any
finite agent (e.g., logical omniscience) or no theory exists
for the domain in question, or our aim in building the agent
system is to inform the process of theory construction. A
more realistic scenario would begin with a developer who
wishes to build an agent-based system to meet a particular
need (e.g., an air traffic control system or a meeting schedul-
ing system), or a researcher who wishes to explore the im-
plications of different architectures, e.g., (Sloman & Logan
1998). The developer or researcher is often presented with a
range of different tool(kit)s and must choose the most appro-
priate for the current problem or decide that no appropriate

tool exists and a new one must be developed.
At present, there is very little guidance on how to go about

choosing a toolkit. Usually we can’t even determine what is
possible in principle with a given toolkit. The theory which
the toolkit actually implements is rarely made explicit, and
even if the theory were available, it may offer few useful
generalisations or be at too low a level to be useful. What
can be developed depends largely on the ingenuity of the
programmer. In any event, such ‘in principle’ questions are
of limited relevance to the development of practical systems.
What is required is a heuristic mapping from features of the
agent system to be developed to toolkits, which suggests
tools that are likely to be appropriate to a given develop-
ment task. At the moment, we have no normative theory
of how to choose a good toolkit for a task. We do however
have a growing body of published and anecdotal experience
of successful and not so successful agent systems developed
with different tools. Unfortunately it is hard to draw on this
experience when faced with a new problem, unless the sys-
tem being developed is similarin all relevant respectsto one
which has already been built. Moreover the fact that one can
build a system with characteristicsX using tool(s)Y doesn’t
mean that it is a good idea to do so; there may be other tools,
Z, which are better suited to the problem.

Such a mapping presupposes a classification of agent sys-
tems. Without a stable, task-neutral classification of agent
systems, we can’t state empirical generalisations of what
works and what doesn’t. Such generalisations would be use-
ful in their own right and as a first step in understanding why
a toolkit works for a particular problem.

In this paper we propose a simple scheme for classify-
ing agent systems. As such, the paper makes no falsifi-
able claims. Rather we propose an approach to classification
which we believe may be useful in comparing and evaluating
agent systems.1 Its ultimate utility will depend on whether it

1Our aim is not to compare two agents with, e.g., the same ar-
chitecture but differing action selection functions or goal utilities.
Although difficult, this is conceptually unproblematic. Rather we
address the problem of how to develop an abstract characterisation
of an agent system capable of supporting general statements about
and comparisons between classes of systems and as an aid in iden-
tifying appropriate implementation strategies. Such a classification
scheme can’t be used to decide if one agent system isbetter than
another; at best we can say that one agentA subsumes another



captures at least some of the important ways in which agent
systems can differ, and whether the resulting classifications
can serve as a basis for empirical generalisations. In the
next section, we briefly discuss previous attempts to define
‘agent’, and suggest that it may be more fruitful to view the
notion of agent as a cluster concept. In section 3, we use this
view to motivate an approach to classification based on the
identification of features of agent systems, and outline a high
level taxonomy based on these features. In section 4, we il-
lustrate how the scheme can be applied by means of some
simple examples. In the conclusion, we identify some open
problems and discuss some issues in the design of toolkits.

‘Agent’ as a cluster concept
Despite a number of attempts, there is no widely agreed
definition of what constitutes an agent (see, for exam-
ple, (Wooldridge & Jennings 1995; Nwana 1996; Franklin
& Graesser 1997)). It has been argued that this is not nec-
essarily a problem: if many people are successfully devel-
oping and implementing interesting and useful applications,
then it does not matter whether they agree on terminological
details (Wooldridge & Jennings 1995). However, if we are
to compare agent systems, we need some means of charac-
terising them.

Wooldridge and Jennings (Wooldridge & Jennings 1995)
identify four key characteristics of a hardware or soft-
ware based system which together define a ‘weak notion of
agency’:
autonomy: agents operate without the direct intervention

of humans or others, and have some kind of control over
their actions and internal state;

social ability: agents interact with other agents (and possi-
bly humans) via some kind of agent-communication lan-
guage;

reactivity: agents perceive their environment, (which may
be the physical world, a user via a graphical user interface,
a collection of other agents, theINTERNET, or perhaps all
of these combined), and respond in a timely fashion to
changes that occur in it;

pro-activeness:agents do not simply act in response to
their environment, they are able to exhibit goal-directed
behaviour by taking the initiative.

In this view, an agent is a something like aUNIX soft-
ware process, i.e., a self-contained, concurrently executing
thread of control that encapsulates some state and commu-
nicates with other agents via some sort of message pass-
ing (Wooldridge & Jennings 1995).

However, this similarity with existing software notions
has led some to claim that this definition does not distinguish
an interestingnewclass of system. For example, Franklin
has argued that Wooldridge and Jennings’ ‘weak notion of
agency’ could apply to “a payroll program with a graphi-
cal interface and a decidedly primitive communication lan-
guage” (Franklin & Graesser 1997). Franklin goes on to
propose an alternative definition based on the notion of an
‘autonomous agent’:

agentB if the features ofA are a superset of the features ofB.

“An autonomous agent is a system situated within and
a part of an environment that senses that environment
and acts on it, over time, in pursuit of its own agenda
and so as to effect what it senses in the future.”

Further restrictions are then added to give a hierarchical
classification based on set inclusion which defines more
particular classes of systems, for example ‘mobile agent’,
‘learning agent’, ‘mobile, learning agent’ and so on. How-
ever Franklin’s definition itself is also open to criticism; for
example, it could be applied to a payroll program which pays
bonuses or commission on the basis of profits or sales.

Other approaches which are frequently adopted are to
characterise agent systems using features of their imple-
mentation or the tasks they are intended to perform. How-
ever, this makes it difficult to identify useful generalisations
which apply to agents implemented using different tools,
or which perform tasks which are superficially different but
share important characteristics.

In this paper we take the view that there is no single def-
inition of ‘agent’; the metaphor has several different senses
which are appropriate to varying degrees in different sys-
tems. Rather we view agent as acluster concept. By a clus-
ter concept we mean a conceptC for which there is a some
(not necessarily well defined) set of features or properties
F1; F2; : : : ; Fn such that possession of various subsets of
those features is taken as adequate justification for ascribing
the conceptC to an individual, without there being any pre-
cise specification ofwhichcombinations of the features are
necessary and which are sufficient, i.e.,C is not equivalent
to some disjunction of conjunctions of the features. Hence
indeterminate cases can arise (Sloman 1995).

We therefore adopt a different approach, which is to de-
vise a series of more or less orthogonal properties or ‘di-
mensions’ which can be used to describe an agent system in
a systematic way . The dimensions could be ratio scales, or
ordinal scales, but in the simplest case they are binary pred-
icates which are either true or false of the system. This is
the technique of conceptual analysis familiar from philos-
ophy. It is similar in spirit to the approach advocated by
Franklin, except that we dispense with the notion of ‘au-
tonomous agent’per seand instead simply attempt to char-
acterise software and hardware systems using a number of
attributes which are associated with the notion of an agent.
It would be an error to assume that any subset of these di-
mensions or positions on these dimensions ‘really’ defines
an agent, though some regions of the space may be more in-
teresting than others. All of the dimensions are contingent
properties of an agent system and there is no subset of prop-
erties which are either necessary or sufficient for a system
to be an agent.2 In principle, these dimensions are applica-
ble to all software and hardware systems including payroll
programs, word processors etc. The fact that such systems
canbe viewed as agent-like in some sense is not a flaw, they

2Although the list of properties outlined in the following section
covers many of the features typically associated with intelligent
agents in the agent literature, it is entirely conceivable that a system
could have none of these properties and still be an agent system.



are just not very interesting cases.3 Which dimensions are
relevant depends on which aspects of agency we are inter-
ested in. In the next section we outline a set of dimensions
which we have found useful in characterising intelligent au-
tonomous agents.

Classification dimensions
In this section, we identify a number of properties or at-
tributes which attempt to capture the main dimensions of
variation in agent systems. The properties are grouped into
four main categories: the features of the environment in
which the agent system is embedded, the types of actions
it can perform and the kinds of goals and beliefs that can be
attributed to it. Each property defines a broad class of sys-
tem, e.g., the class of systems which are mobile or which
are capable of autonomous goal generation, and can be de-
composed into sub-categories to allow finer distinctions to
be made. (In a number of cases we have indicated how the
classification could be refined to allow greater discrimina-
tion between cases.) In so far as possible, we have attempted
to define the properties such that the dimensions of variation
are orthogonal, i.e., the fact that one property is true of an
agent system should not imply that any other property is true
of the system.

In an attempt to avoid conflating the properties of the
agent’s ‘environment’ and its architecture, the classifica-
tion distinguishes between external and internal views of
an agent system: discussion of the environment requires no
knowledge of the agent or its capabilities; discussion of ac-
tions is relative to a particular agent but requires no knowl-
edge of the internals of the agent; goals are partly internal,
and representations are wholly internal (unless manifest in
messages etc.). Different viewpoints may be appropriate de-
pending on the purposes of the analysis or the amount we
know about the agent system.

We shall use the term ‘agent system’ to refer to the sys-
tem being analysed, as this allows us to finesse the distinc-
tion between an agent and a multi-agent system. An agent
system consists of one or more agents. An agent is either a
primitive agent (for the purposes of the analysis), or an agent
system. A primitive agent is not further defined; in principle
it could be anything (see, for example, (Luck & d’Inverno
1995)), but more usually it is some sort of software or hard-
ware system. An agent system therefore includes the usual
sense of a multi-agent system in which the agents cooperate
to achieve a common goal or goals, and e.g., an artificial life
environment, in which the agents compete with one another.

In what follows, we develop a classification of agent sys-
tems. For example we consider the environment of the
agent system as a whole rather than the environment(s) of
the agents which comprise the system (if there is more than
one), though each of these can be viewed as an agent sys-
tem in its own right with its own environment (which may
extend beyond the agents comprising the system of which it
is a part), by changing the level of analysis. Similarly, the

3This is similar to viewing a thermostat as a limiting case of
an intentional system, it is just not a very interesting one (Dennett
1987).

actions, goals and beliefs are those of the agent system as a
whole.

Properties of the agent’s environment
The following set of properties is offered as a first attempt
to characterise the environment of an agent system. The en-
vironment of an agent system is that part of the world or
computational system ‘inhabited’ by the agent.4. The envi-
ronment may contain other agents whose environments only
partially overlap with the environment of the agent under
study. The classification is based on that proposed by Rus-
sell and Norvig (1995, pages 45–46), except that it makes
no reference to the capabilities of a particular agent, i.e., it
attempts to describe what the agent’s environment is ‘really
like’.5 This allows us to describe important aspects of an
agent’s task(s) in an agent-independent way, without refer-
ence to the design of the agent. Such an approach is essential
if we are to determine whether two agents inhabit the same
environment.

How an agent system is embedded in its environment is
an important aspect of its design and the environment as per-
ceived by an agent may differ from ‘reality’, for example if
the agent has no, or only limited sensors, or lacks the ability
to represent or reason about the environment (see below).
Different agents may employ different sets of concepts re-
lating to the same environment: a fly may be able to detect
an object moving rapidly towards it but unable to interpret
its visual input in terms of concepts like ‘wall’, ‘floor’, or
‘ceiling’. In what follows we adopt the position of an omni-
scient observer, but the same set of properties could be used
to classify the environment as it appears to the agent.

Observable vs partially observable environments The
environment is observable if it is possible in principle to de-
termine the complete state of the environment at each time
point (given reasonable assumptions about sensors and finite
processing capacity). Otherwise it is only partially observ-
able. An environment may be observable if it is specified as
part of the task, for example an artificial or synthetic envi-
ronment such as a simulation; naturally occurring environ-
ments are usually only observable to some specified level of
resolution or abstraction. For example, a chess board is ob-
servable, whereas the environment of a mobile robot usually
is not. Certain aspects of the agent may themselves form
part of the agent’s environment, in that they are observable
in some sense by the agent. For example, an agent may be
able to monitor certain aspects of its internal state, such as
the resources remaining to complete its tasks.

Static vs dynamic environments If the environment only
changes as a result of the agent’s actions, it is static; oth-
erwise it is dynamic. This may be as a result of natural
processes, such as the diurnal cycle or the weather, or the

4It is specificallynot the output of the agent’s sensors
5For example, Russell and Norvig argue that it is “often bet-

ter to think of an environment as deterministic or nondeterministic
from the point of view of the agent”; however this conflates partial
observability with nondeterminism.



actions of other agents or both. An environment which is
in principle static may appear dynamic to a resource limited
agent which is unable to anticipate all the consequences of
its actions, even if the actions are infallible (see below).

Deterministic vs nondeterministic environments An en-
vironment is deterministic if its future state can be predicted
in principleby an omniscient observer from the current state
of the environment and the set of actions which can be per-
formed in the environment (given finite processing capac-
ity), whether or not the agent system actually makes use of
such predictions. Otherwise it is nondeterministic. For ex-
ample, an environment where there is some means of mak-
ing a random choice, such as tossing a coin, is nondeter-
ministic. An action is nondeterministic if it can have have
several different outcomes when performed in a given state.
Whether the environment is predictable in practice depends
on how well the agents in the environment implement the ac-
tions. If an agent makes errors in executing a deterministic
action, the environment will be nondeterministic in practice
in the sense that it is not possible to predict the future state of
the environment given the current state and the action ‘per-
formed’ by the agent.

Discrete vs continuous environments If there are a lim-
ited number of distinct, clearly defined, percepts and actions,
we say the environment is discrete, otherwise it is continu-
ous (Russell & Norvig 1995). For example, the environment
of an INTERNET agent is typically discrete, whereas the en-
vironment of a mobile robot is usually continuous.

Single vs multiple agents The agent’s environment may
contain other agents. If it does, these may be of the same
kind as the agent, or they may be of different kinds. Whether
these agents form part of a single larger agent system may
depend partly on the purpose of the analysis, for example if
we are considering the environment of one component of a
multi-agent system. Even if the other agents are not part of
the same multi-agent system, the environment may still be
deterministic if the other agents behave in predictable ways,
e.g., if they are under the control of the agent being analysed.

Properties of the agent’s actions
In this section, we outline some general properties of ac-
tions. As with environments, we adopt the perspective of
an omniscient observer to facilitate comparisons, however
in this case our discussion is constrained to a particular set
of idealised actions performed by one or more agent(s). In
some cases, it may make sense to classify the agent relative
to some subset of the actions it can perform, for example if
different types of actions have different properties. In the
limit, we may wish to classify each of the agent’s actions
individually, if this is relevant to the analysis.

We define an action in terms of its preconditions and ef-
fects and any constraints which specify the way in which
the intended state is achieved, e.g., the time taken to per-
form the action, or the requirement that the agent should not
bump into anything while performing the action. An agent

may make errors in performing an action, either by failing
to achieve the intended effect of the action, or by violating
one of the constraints. We therefore distinguish between
the properties of an action (considered abstractly) and the
properties of the agent’s behaviour which realises or imple-
ments the action. For example, whether the agent can reli-
ably perform the same behaviour in the same environment,
and whether the agent is equally reliable in all environments
(in which the action is possible in principle). The action of
‘moving to the next room’, may always be reliably executed
by an agent if the door is of a given width, say 1m. With a
narrower door, the execution of the action may become un-
reliable, even though the action is still possible in principle
(i.e., the doorway is wide enough to allow the agent to pass
through).

This allows us to distinguish between the ‘true nature’ of
an action and the action as it appears to an agent (for exam-
ple, different agents may find the ‘same’ action more or less
difficult or costly to execute. In what follows, we consider
only idealised actions independent of the behaviour of the
agent (with the exception of action costs which are neces-
sarily agent specific) so that we can say whether two agents
are ‘performing the same action’. However, a similar set
of properties could be used to classify the behaviour of the
agent.

Infallible vs fallible actions An action is infallible if it
is guaranteed to produce its intended effects when correctly
executed in an environment which satisfies the preconditions
of the action. Otherwise it is fallible. Note that fallibility is
related to theintentof an action and only indirectly related
to nondeterminism. A nondeterministic action is one which
can have several different outcomes when performed in a
given state. An infallible action is one in which the possible
outcomes of the action are a subset of the intended outcomes
of the action. For example, the action of tossing a coin may
be an infallible means of choosing between two alternatives
(if the coin never lands on its edge), whereas the action of
‘rolling a six’ with a fair die is fallible. If the agent’s actions
are fallible, then even a static environment will be nondeter-
ministic.

Utility of actions The utility of an action for a given goal
and environment is the utility of the state which results from
the action. Different actions may have different utilities. If
there are several actions the agent could perform to achieve
a goal in the current environment and there is no way of
choosing between them, we say the actions have equal util-
ity. If there is a well defined notion of action quality, we say
actions have different utilities and the action with maximum
utility is correct.

Action costs Different actions may have different resource
implications or costs. For example, consumption of energy
or money, consumption of time that could be spent doing
other things, or abstract costs related to the agent’s value
system: e.g. doing something one disapproves of would be
a cost. Costs may be incurred immediately or they may be



deferred until some future time. In some cases, all actions
for a given agent may have zero or unit cost, but in general
different actions will have different costs, which may or may
not be a function of the current state of the environment.6 An
action is optimal if it is correct and there is no other correct
action with lower cost. If the environment is nondetermin-
istic, the cost of an action may not be known before it is
performed. If the environment is only partially observable,
the cost of an action may not be known even after it is per-
formed. In general, different agents will incur different costs
in performing the same action. For example, the action ‘take
the ball fromA to B’ will be easier for an agent to perform
if it can pick up the ball. Note that the agent may not con-
sider all the possible costs of its actions, either because it is
unable to represent them (see below) or because it has no
way of predicting the cost of the action. For example, an
agent which ignores the cost of computation will behave in
a manner similar to pure deliberative systems, e.g., classical
planning systems.

Types of Actions

In this section, we identify a number of action types which
are often associated with the notion of ‘agent’ (and which
may or may not have the properties outlined above).

Sensing actions The ability to perceive its environment is
necessary if the agent is to bereactive, i.e., able to respond to
changes in the environment in a timely manner (Wooldridge
& Jennings 1995; Franklin & Graesser 1997). The agent
may have several different ways of sensing the environment,
which may be more or less fallible, and more or less expen-
sive.

Moving actions If there is no action an agent can perform
which has the effect of changing its view of its environment
in some way it is said to be immobile, otherwise it is said
to be mobile. For example, an agent which receives all its
sensory data in the form of broadcast messages is effectively
immobile. Conversely, if an agent can move within its en-
vironment in such a way as to change what it senses or the
actions it can perform (or reduce the costs of performing an
action), then it is mobile in the conventional sense. This in-
cludes the case of an agent which changes its position in a
partially observable environment and that of an agent which
moves its execution state to a different machine.

Communicating actions The ability to communicate with
other agents is often taken to be one of the defining char-
acteristics of an agent (Wooldridge & Jennings 1995). An
agent can be said to communicate with other agents in a
meaningful way (other than through its non-communicative
actions in the environment), if it interacts with them via

6In simple cases there may be a single measure of utility/cost.
For organisms, and certainly for humans, there does not seem to be.
In particular, some costs and benefits may be incommensurable.

some kind of agent communication language (i.e., in a lan-
guage with a semantics and pragmatics). If there are differ-
ent kinds of agent in its environment, the agent may have to
communicate in several different languages,

Properties of the agent’s goals
In this section and the next, we consider properties of the
agent’s goals and beliefs. In attempting to characterise the
beliefs and goals of an agent, we are of course assuming that
the agentexplicitly represents its goals and beliefs, i.e., we
can know what the agent’s goals and beliefs are by looking
inside the agent. Not all agents represent beliefs and goals
explicitly, even though they act in a goal-directed manner.
For example, the behaviour of an agent may be controlled by
a collection of decision rules or reactive behaviours which
simply respond to the agent’s current environment.

In cases where the agent has no explicit representations
of goals or beliefs we assume that it is possible to view the
agent as anintentional system, that is we ascribe to it the be-
liefs and goals itoughtto have, given what we know of its
environment, sensors and (putative) desires (Dennett 1987;
1996).7 For example, an agent which has an ‘avoid obsta-
cles’ behaviour, can be said to have a goal of ‘avoiding col-
lisions’, even though this goal is not explicitly represented
in the agent. This approach, which Dennett calls “adopting
the intentional stance”, allows us to ascribe propositional at-
titudes to agent systems which do not explicitly represent
beliefs and goals, without having to know anything about
the agent’s state or architecture.

In many cases this works reasonably well; for example,
the predictions we can make by attributing a goal of avoiding
collisions to a behaviour-based agent with an ‘avoid obsta-
cles’ behaviour will be similar to the behaviour exhibited by
the system. In other cases it is more problematic, largely due
to the arbitrary nature of intentional attribution to such min-
imal intentional systems. Given only the agent’s desires and
its environment, we must assume some sort of design for the
agent—some reasonable way of achieving its desires—and
work backwards to what sorts of events in the environment
are significant, and hence the sorts of percepts and beliefs
it ‘ought’ to have. The more we know about the design of
an agent, e.g., what sorts of sensors it has, the easier it is to
choose between alternative competing designs, and the sorts
of beliefs the agent ‘ought’ to have. However, in general,
viewing an agent as an intentional system seems more likely
to yield useful insights than, e.g., a description of the topol-
ogy and weights of a neural net.

In this section we will focus on the intrinsic goals of an
agent. Anintrinsic goal is one which is not a subgoal of an
already intended end (Georgeff & Lansky 1987). Such goals
may be thought of as the top-level goals of an agent. They
often originate outside the agent system (unless the agent
can generate its own goals, see below), with users or other

7We may be able to infer some of the agent’s current goals
from its actions in the environment, but a purely ‘behaviouristic’
approach can’t tell us about other goals which are not currently af-
fecting behaviour, but which, e.g., may have influenced the choice
of the current goal.



agent systems. The treatment of sub-goals, goals generated
in the process of achieving an intrinsic goal, is similar, but
the properties of such goals may be different. For example,
an agent may be less committed to a sub-goal than to the
intrinsic goal that gave rise to it, if there are other ways of
achieving the intrinsic goal. Whereas abandoning a sub-goal
may require a change of strategy, abandoning an intrinsic
goal may involve negotiation with other agents or reporting
failure to the user.

Autonomous generation of goals The ability to generate
its own goals is often taken to a defining characteristic of an
‘autonomous agent’. The autonomous generation of goals
implies that the agent has in built desires or preferences de-
termined by the developer of the agent system. Such desires
are often sensitive to both the current state of the environ-
ment and the agent system; situations which give rise to a
new goal when the agent is in one state may not give rise
to goals when the agent is in another state, e.g., when it is
attending to a higher priority goal.8

Achievement vs maintenance goalsA goal to achieve
a particular state in the environment once is termed an
achievement goal; a goal to maintain or preserve a state in
the environment is termed a maintenance goal. For exam-
ple, a thermostat has a single maintenance goal whereas a
goal to find the lowest price for a product or service is an
achievement goal.

Single vs multiple goals If an agent is capable of repre-
senting (explicitly or implicitly) more than one goal, we say
the agent has multiple goals, otherwise it has a single goal.
If an agent has only a single achievement goal and this goal
is achieved, then the agent typically either terminates or be-
comes quiescent awaiting further goals (unless it is capable
of autonomous goal generation, see above). If the agent has
at least one maintenance goal, then the agent’s ‘lifetime’ is
potentially unbounded. If the agent has multiple goals, they
may be all of one type or a mixture. For example, a delivery
robot may have several achievement goals to deliver pack-
ages and a maintenance goal not to let its batteries run down.
An agent with multiple goals may process only one goal at a
time or it may process some subset of its goals in parallel. If
there is a single world state, reachable from the current state,
in which all the agent’s goals are (simultaneously) true we

8It seems less natural to view such autonomously generated
goals as simply sub-goals of a higher-level maintenance goal. Con-
sider a delivery robot which, when it knocks something over, picks
it up again. It is not clear how a top level maintenance goal to
pick up objects which have been knocked over would be formu-
lated (‘keepingX upright’ or ‘keepingX on top ofY , for any
relevantX andY ’?). Even if such a goal could be formulated, the
agent would still require some low level processing to detect when
this goal had been violated. Although autonomous goal generation
does effectively the same thing, it does not require the explicit rep-
resentation of the universally quantified goal state, since we can
write a goal generator which responds to particular instances of
things which have been knocked over.

say the agent’s goals are consistent. If there is no sequence
of states reachable from the current state which satisfies the
agent’s goals, we say the goals are inconsistent. Note that
the agent may not know whether its goals are consistent or
not.

Commitment to goals If an agent only abandons a goal
when it is achieved we say the agent is strongly committed
to its goal(s). If the agent will also abandon a goal in other
circumstances, e.g., if it can prove that it cannot be achieved
or after expending a given amount of effort, we say the agent
is weakly committed to its goals. For example, an agent may
ignore a new autonomously generated goal if it already has a
goal, or the new goal may always replace the current goal, or
the agent may use the relative utilities of the goals to decide
which goal to pursue. Alternatively, if at least some of the
agent’s goals originate outside the agent (e.g., in the form of
requests from other agents or users), the agent may either be
inherently cooperative if the goal always takes precedence
over its own desires and goals, or more or less autonomous
in the sense that it only adopts the goal if it is in its own
interest to do so (as judged by its own desires) or if the ex-
ternal goal does not conflict with any of the agent’s existing
goals. If the agent is capable of representing multiple goals,
then it can add the goal to its list of pending tasks.

Utilities of goals If the agent’s goals are all equally im-
portant, in the sense that the reward for achieving them is
the same, we say the agent’s goals have equal utility. If the
agent’s goals have different utilities, the utilities may be in-
commensurable, e.g., if the utilities define only a partial or-
der over goals, or commensurable, e.g., the goals are ordered
on a ratio scale, allowing the agent to determine that achiev-
ing goalA has greater utility than the combined utility of
achieving goalsB andC. If the agent’s goal(s) have to be
achieved before some deadline or the utility of achieving the
goal varies with time, then the goals are time dependent or
real-time. If the utility of achieving one goal is independent
of the utility of achieving future goals, we say the agent’s
goals are episodic, otherwise we say they are non-episodic.
For example, the goals of an information retrieval agent may
be episodic in that its success in achieving subsequent goals
(requests for information) is not dependent on how well it
achieves its current goals. In contrast, the goals of a robot
building a tower of blocks may be non-episodic, if inabil-
ity to achieve the current goal prevents future goals being
achieved (or causes the tower to collapse).9

Meta-goals Some conditions on the attainment of goals
such as the time or resources available to achieve a goal
or the reliability with which the goals are achieved cannot
themselves be modelled as goals. A meta-goal is a con-
straint on another goal or more generally on the internal
states and processes of of the agent. For example an agent

9In (Russell & Norvig 1995) this is seen as a property of envi-
ronments rather than goals.



which responds to requests for information may be con-
strained to spend no more thant seconds processing each
request. (Note that this is different from the case in which
we require that, e.g., a plan to achieve a goal should take no
more thans seconds to execute.)

Properties of the agent’s beliefs
In this section we consider the characteristics of the agent’s
beliefs about its environment, i.e., what the agent believes its
environment to be like as opposed to what its environment
is ‘really like’ (see above). The agent’s representation of its
environment may diverge from reality in a number of ways,
for example the agent may simplify or abstract from the true
nature of the environment in an attempt to reduce the effort
required to construct and maintain the representation by fo-
cusing on those aspects which are critical to the attainment
of the agent’s goals, or the agent may simply be mistaken.

A complete characterisation of the agent’s beliefs would
require some way of classifying the ontology used by the
agent. We focus on the general characteristics of the agent’s
beliefs rather than the particulars of what it believes in any
given situation or how these beliefs are represented. In some
cases, an agent may use several different representations of
beliefs, for example it may use different kinds of representa-
tions for different kinds of information or it may use differ-
ent representations of the ‘same’ belief, e.g., in the hierar-
chical processing of sensory data. At one extreme the agent
may simply store the percepts produced by its sensors, while
at the other constructing a representation may require con-
siderable effort in the form of parsing or image understand-
ing.

Not all agents build and maintain an explicit representa-
tion of their environment. As with goals, we shall assume
that it is possible to determine the general characteristics of
the agent’s implicit beliefs by viewing the agent as an inten-
tional system.

Consistent An agent’s beliefs are consistent, if for any
propositionp, the agent does not believe bothp and:p,
otherwise they are inconsistent. For example, it is inconsis-
tent for an agent for an agent to believe both that it has and
has not sufficient resources to achieve its goals. Whether
an agent’s beliefs are currently consistent is a contingent
fact; what we are concerned with is whether the agent’s be-
liefs can ever be inconsistent. Inconsistencies can arise if
there are several different ways of deriving the ‘same’ be-
lief which give different results; for example, a mail filtering
agent which classifies a message as ‘interesting’ based on
its author and ‘uninteresting’ based on its subject. Some de-
signs guarantee consistency, for example, where the agent’s
beliefs are limited to the current values of its sensors. How-
ever, in general, determining whether an agent’s beliefs are
consistent is is only possible if the agent’s belief representa-
tion corresponds to a very weak logic.

Certain An agent’s beliefs are certain if the representa-
tion of its beliefs does not admit degrees of belief, i.e., for
any propositionp that the agent entertains, it either believes

thatp or it believes that:p, otherwise it is uncertain about
p. In the latter case, the agent may represent it degree of
belief in a proposition in the form of confidence factors or
probabilities, or in some other form. For example, an agent
may believe that it can obtain the information for which it is
searching on a given web page with certainty of 0.1. Note
that an agent’s beliefs can be certain, even if the agent’s en-
vironment is only partially observable.

Nested propositional attitudes The agent’s beliefs con-
tain nested propositional attitudes if the agent can represent
its own beliefs and goals and/or the beliefs and goals of other
agents. For example, an agent may believe that it has a goal
to deliver a package to an office on the first floor, or that an-
other agent knows whether there are free seats on the next
flight to Madison.

Some examples
In this section we briefly illustrate the application of the
classification scheme outlined above in two prototypical
examples, a mail filtering agent and a multi-agent system
for transporting large objects. The mail filtering agent
is based on that described by Maes et al (Maes 1994;
Lashkari, Metral, & Maes 1994), whereas the multi-agent
system has many similarities to that described by Barnes
et al (Coddington & Aylett 1996; Barneset al. 1997;
Coddington & Aylett 1997). In each case, we illustrate how
the classification helps to clarify the level of the analysis and
how different interpretations of the description of the system
results in a different classification of the system.10

A mail-filtering agent
Mail filtering is a frequently cited application for agent-
based systems. For example Maes has described an elec-
tronic mail agent which learns to prioritise, delete, forward,
sort and archive mail messages on behalf of the user (Maes
1994; Lashkari, Metral, & Maes 1994). In this section we
illustrate how one might go about classifying a hypotheti-
cal mail filtering program, which is broadly similar to that
developed by Maes et al. and highlight those aspects which
seem most sensitive to the level of analysis and implemen-
tation strategy adopted.

We assume that the environment of the agent is one or
more mail spool files which the agent monitors for incom-
ing mail messages. Such an environment is observable, dy-
namic and nondeterministic. It is discrete at one level of ab-
straction, in that all messages consist of one or more fields
some of which are always present. However, in general, the
contents of the fields can be anything (unless the messages
are completely stereotyped) and so is more appropriate to
consider the agent’s environment as continuous. The envi-
ronment may or may not contain other agents, for example,

10In many ways it would have been preferable to classify imple-
mented systems, however in the small number of systems we have
studied to date, there is insufficient information in the published
literature to allow the agent system to be classified on each of the
dimensions identified above.



the mail delivery system may be an agent, or the mail fil-
ter itself may be part of a larger multi-agent system, e.g., a
personal digital assistant which notifies the user of impor-
tant messages or responds to routine requests for meetings
etc.. If the mail filter program is not persistent, for example,
if a new instance of the agent is created by another agent
to classify each newly arrived mail message as interesting
or uninteresting, then we could be justified in describing its
‘environment’ as both static and deterministic, since the en-
vironment is a single mail message.

The actions the agent can perform in such an environment
are typically infallible. (The action may be incorrect given
the goal(s) of the agent, e.g., it may incorrectly delete a mes-
sage as uninteresting, but the action of deleting the message
is usually guaranteed to succeed.) Whether the agent’s ac-
tions have different utilities or costs depends on whether it
has different way of classifying a message as interesting. For
example, checking for keywords and performing a semantic
analysis of the message are two different way of determin-
ing if the message is interesting, but they typically have very
different utilities and costs. An agent which monitors a mail
spool file must be able to sense when the file is updated, and
may also require additional sensing actions to extract infor-
mation from the message. (Conceivably, an agent which is
simply given the goal of determining if a message with a
given set of keys is interesting would not need to sense its
environment, since all the information it requires to perform
its task is part of the goal.) The agent may be able to com-
municate with other agents, for example to ask for assistance
with the semantic analysis of a message or to request infor-
mation about the sender of a message. Alternatively, it may
simply delete uninteresting messages from the spool file or
move them to a different mail folder. It is unlikely that a
mail filtering agent would be mobile.

The goals of the agent will typically take the form of a
stream of autonomously generated achievement goals. How-
ever if a new instance of the agent is created to classify
each message, then the agent only ever processes a single
achievement goal (and is not autonomous). The agent may
be strongly committed to its goals, e.g., if the agent always
classifies one message before moving on to the next or is
its architecture guarantees that the time taken to classify a
message is bounded. All goals have equal utility and are
episodic.11 The agent may have meta-goals or it may be
possible to ascribe meta-goals to the agent, for example, if
the time available to classify a message is a function of load
on the system or the rate of incoming messages.

The beliefs of the agent depend on the information it can
extract from its environment, e.g., the content of messages,
the number of messages waiting to be classified, the rate of
incoming messages etc., and the ways in which its beliefs
can be manipulated, e.g., whether it can infer new beliefs
from its current beliefs. In addition, the agent will typically
have certain innate beliefs, e.g., that messages from certain
people are always important. Its beliefs may be inconsis-

11This if often true of filters, where the aim is to generate some
information which can be used to determine the utility of other
goals.

tent and uncertain, for example it may expresses its belief in
whether a given message is interesting in the form of a cer-
tainty factor, and may contain nested propositional attitudes,
for example if it maintains an explicit or implicit model of
the user’s preferences. If the MAXIMS agent (Maes 1994)
does not have enough confidence in its prediction of whether
an action is appropriate, it asks for help from other mail fil-
tering agents. Over time, it learns which other agents are
trustworthy sources of information for different classes of
problems.

A multi-agent transportation system
In contrast, in this section we illustrate how one might clas-
sify a multi-agent transportation system based on physical
robots. The system we describe is loosely based on that
developed by Barnes, Aylett and Coddington (Coddington
& Aylett 1996; Barneset al. 1997; Coddington & Aylett
1997), in which two or more physical robots with poten-
tially different characteristics cooperate to transport an ob-
ject. The system contains both behaviour-based and deliber-
ative components and must confront all the problems of real
agents operating in an uncertain physical environment. In
doing so, we attempt to illustrate how the use of our classi-
fication scheme can help to characterise the similarities and
differences in systems with very different architectures and
implementations.

In what follows, we consider the case of an agent system
consisting of two or more physical robots, which cooperate
to move objects around a warehouse. The environment of
the system is only partially observable, static (since it is as-
sumed that nothing moves unless one of the robots move it),
nondeterministic (since actions may have several outcomes)
and continuous. In the experiments described by Barnes et
al., the environment contains no other agent systems, though
the system being analysed itself consists of several agents.

The actions the agent can perform include various sorts
of sensing, grasping and motion, however the agents do not
communicate directly with one another. Rather when both
robots are holding an object the relative motion of one robot
is transmitted to the other robot and vice versa. Actions are
fallible (since they may fail to have their intended effects)
and have differing utility and cost, for example there are
many different routes between any two points in the envi-
ronment, only some subset of which have maximum utility
and minimum cost.

The system has both achievement and maintenance goals,
for example to transport an object to a particular location
while avoiding collisions. However, the generation of goals
is not autonomous; goals are generated externally to the sys-
tem and either form part of the system’s definition or are
input by a human user. At any one time the system has at
most one achievement goal, to which it is strongly commit-
ted. For example, if the object is dropped, the agents will
attempt to pick it up again. Goals have differing utilities, in
that maintenance goals, such as the avoidance of collisions,
can modify the actions generated to satisfy the achievement
goal. Each goal may or may not be episodic, for example
if the achievement of a transportation goal is dependent on
achieving a goal to pick up the object, or if the goal is collect



several objects together at the same location. The system ap-
pears to have no meta-goals.

The beliefs of the system are dependent on the informa-
tion it can obtain from the sensors of the physical robots and
on the innate beliefs of the ‘Reflective Agent’ which con-
tains an abstract world model representing the large scale
static properties of the environment and abstract represen-
tations of the actions which can be performed by the be-
havioural agents. Beliefs are not represented explicitly in
the behaviour based architecture of the physical robots, but
certain beliefs can be ascribed to the system at this level, for
example that an agent is holding the object, or that it is about
to collide with a wall, and such beliefs serve to modulate the
behaviour of the agents, e.g., by causing the agents to slow
down when they approach an object.

Conclusions and further work
To select an appropriate tool or tools to build an agent based
system we need to map from features of agent systems to im-
plementation technologies. In this paper we have presented
a classification scheme for agent systems as a first step in
developing a methodology for the selection of implementa-
tion technologies. We have said almost nothing about im-
plementation technologies themselves, largely because we
do not understand which of their many features are signif-
icant. However, while such classification is desirable, and
ultimately necessary, in the short term is seems more likely
that we can make progress by focusing on the relationship
between the features of successful and unsuccessful agent
systems and the toolkit employed in developing the system
where this is considered to be a factor in the success or oth-
erwise of the system.12

To date, relatively few agent systems have actually been
implemented and in the majority of cases little use has been
made of previous work. However this situation is beginning
to change, and we are starting to see the reuse of tools in the
development to systems for more than one problem or do-
main. As such data become available, it should be possible
to classify the types of systems which have been built with
each toolkit, and use this information to develop a mapping
from problems to tools. It should also be possible to explore
the differences between agent systems in a more systematic
way, to determine if one is a special case of another, or to
discover why an approach which was useful in one domain
turned out not to be useful in an apparently similar domain.
By focusing on such anomalies, it may be possible to refine
our classification of agent systems.

The classification scheme outlined above can be seen as a
first step towards an ontology for agent systems. It is based
on an analysis of what seem to us to be the most impor-
tant features of the cluster concept ‘agent’. However, it is
very much a first attempt and will undoubtedly evolve in re-
sponse to attempts to apply it to new systems. Further work
is required to develop and refine the set of classification di-
mensions and to develop a classification scheme for toolk-

12This assumes that the details of the task and task specific
knowledge is not essential to the analysis, but we have to assume
this to support any sort of inductive generalisation.

its (which we suspect is a much harder problem). Further
work is also required to apply the classification scheme de-
veloped above to a wider range of agent systems. However,
we believe this approach will lead to a clearer idea of the
similarities and differences between systems by allowing us
to abstract away from the details of the tasks the systems
perform. If we are fortunate, such a classification may also
suggest future lines of research.
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