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Abstract At least two main strands can be distinguished in the design the-
ory literature: that design is a knowledge-based process; and that design is
a learning process. In this paper we attempt to relate these two views of
design by showing that learning within and between design problems is a nec-
essary consequence of a knowledge-based view of design. Drawing on work
in artificial intelligence, we develop a model of design as a knowledge-based
learning process based on the successive refinement of a body of core heuristics
and embed this model within the abduction-deduction-induction framework
proposed by March (1976).

1 Introduction

At least two main strands can be distinguished in the design theory literature: that
design is a knowledge-based process; and that design is a learning process. For
example, Schon (1988) has argued that the patterns of inference shared among
designers are not significantly different from reasoning in everyday life. What dis-
tinguishes designers is not some mystical ability but the accumulated knowledge
the designer brings to bear upon a problem. Others, such as Bazjanac (1974) have
argued that design can be viewed as a learning process in which the objective is
one of understanding the structure of the problem. In this view design proceeds
through a process of analysis-through-synthesis in which the problem is explored
through a series of attempts to create solutions and understand their implications
in terms of design criteria. In this paper we attempt to relate these two views of
design by showing that learning within and between design problems is a necessary
consequence of a knowledge-based view of design. Drawing on work in artificial
intelligence, we develop a model of design as a knowledge-based learning process
based on the successive refinement of a body of core heuristics and embed this model
within the abduction-deduction-induction framework proposed by March (1976).
In section 2 we discuss the nature of design problems. A design problem is
characterised as as one in which both the objectives and the means available for
achieving these objectives are (of necessity) initially only poorly defined. In section
3 some observations concerning the nature of the design process based on this
characterisation are presented, and it is argued that the fundamental objective in
design is one of understanding the structure of the problem. In section 4 the role of
knowledge in this process is examined in more detail and we argue that design can
only proceed through the development of new relationships and strategies within
the context of the current design problem. In section 5 we investigate the nature of
heuristic rules in some detail. The range of an heuristic is characterised as the task
domain in which it is applicable and we show that for any given set of heuristics
there exists (at least) one problem which cannot be solved using these heuristics. In



section 6 we present an alternative view of the development and use of relationships
in design based on these observations, which focuses on the critical role of learning
in design. The idea of a set of ‘core heuristics’ is introduced and we argue that
the elaboration and adaption of these heuristics can be seen as a simple model of
this complex process. Section 7 develops a model of this learning process within
the framework of the model of design proposed by March based on the three logical
operations of abduction, deduction and induction. In particular, we attempt to
clarify the role of induction in the formation of relationships between criteria and
its relationship to the process of theory formation. In the final section we argue
that despite its limitations, the simple model outlined in the previous sections is
useful in gaining some insight into the role of learning in the design process.

2 The Nature of Design Problems

We begin by presenting our characterisation of design problems in more detail.
At its most general level, a design problem is concerned with the production of a
description of of an artefact or process which meets a given set of objectives or
requirements. These requirements are often initially ill-defined and may be in con-
flict. In general they will not all be equally important; legislative controls are often
value free, whereas user requirements may be modified during discussions with the
client, and constraints generated by the designer may be extensively revised, or
even abandoned altogether during the design process (Lawson, 1980). However,
the real difficulty is that these objectives cannot easily be related to one another.
Lawson (1980) states: “the relative importance of the various requirements change
constantly during the design process as the designer’s value system is itself affected
by the exploration of objectives and what he finds to be possible”. The value judg-
ments regarding ‘trade-offs’ between criteria are therefore context dependent, and
the balance of satisfaction for such requirements may not be clear until the designer
explores the various possibilities in appropriate detail. Such value judgments apply
not only to the ‘qualitative’ criteria such as aesthetics, but also to the relative im-
portance of quantitative criteria which themselves may be susceptible to objective
measurement. Questions about which are the most important problems and what
kinds of solution most successfully solve these problems are also value laden, and
the answers given by designers to these questions are therefore frequently subjective
and highly context dependent.

The nature of the ‘real’ problem is thus often not apparent but must be dis-
covered; problems may suggest certain features of solutions, but these solutions in
turn create new and different problems. The initial expression of the problem is
often misleading, and designers must typically expend considerable effort in identi-
fying the actual nature of the problem which confronts them. Design problems have
no obvious or natural boundaries, but rather seem to be organised roughly hierar-
chically. Many elements of the problem cannot be expected to emerge until some
attempt has been made at generating solutions. Given the essentially subjective
nature of design it is inevitable that some aspects of the problem will remain either
unrecognised or undeveloped for much of the design process. As a result design
problems are full of uncertainties both about objectives and their relative priorities,
and both priorities and objectives are likely to change as solutions emerge. Simon
(1973) calls such problems ‘ill-structured’ and argues that any problem with a large
base of potentially relevant knowledge falls into this category. The design task is
ill-structured in this sense in a number of respects. There is initially no definite cri-
teria to test a solution, much less a formal process to apply the criteria. In addition
the problem space cannot be completely defined due to a radical lack of knowledge.
Also, while the set of alternative solutions may be given in a certain abstract sense,



it is not given in the only sense that is practically relevant. As a result there can
never be an exhaustive list of all the possible solutions to such problems.

Design problems are therefore often multidimensional and highly interdepen-
dent. It is rare for any part of a design to serve only one purpose, and it is fre-
quently necessary to devise a solution which satisfies a whole range of requirements.
Design decisions may have results other than those intended, which highlight pre-
viously unrecognised criteria and relationships. In many cases the stated objectives
are in direct conflict with one another and the designer cannot simply optimise
one requirement without suffering losses elsewhere. For example, though enlarging
a window may well let in more light and give a better view, it will also result in
greater heat loss and may create greater problems of privacy. Different trade-offs
between the criteria result in a whole range of acceptable solutions, each likely to
prove more or less satisfactory in different ways to different clients and users. It is
the very inter-relatedness of these factors which is the essence of design problems
rather than the isolated factors themselves, and it is the structuring of relationships
between these criteria that forms the basis for the design process (Lawson, 1980).
The fundamental objective thus becomes one of understanding the structure of the
problem (rather than the solution), and analysing the inter-relationships between
criteria to gain some insight into the relationships between each individual design
decision and all of the other decisions which together define the solution.

3 The Nature of the Design Process

The designer’s exploration of this structure begins with the initial formulation of the
problem. To a large extent, a design problem has no inherent structure; it acquires
structure as solutions are proposed and problems are reduced to subproblems. In
a very real sense the relationships between criteria can be seen as a function of the
approach to design embodied in the proposed solution rather than as inherent in the
problem itself. This initial formulation forms the basis of subsequent exploration of
the problem.

Consider, for example, the problem of providing a particular view from the
living room in designing a house.! Such a requirement may have been specified in
the original problem description or it may have been generated during the design
process. In either case, an architect might choose to formulate the associated design
problem in terms of some standard solution, as a problem of the arrangement of
the living room and the placement of a window in a way which will provide the
desired view from the relevant areas of the room. Through such a formulation
of the design problem the designer has also formulated the general form of the
solution; any particular design solution is determined by a specific placement of the
window and a specific disposition of the living room. The designer then proceeds
to explore the implications of this particular design decision. In doing so he or she
may make further design decisions and consider a number of design alternatives.
This process of exploration may lead to the discovery that in providing the desired
view it becomes impossible to maintain the relationship between the living area and
the entrance to the house, or that that the basic structural system of the house will
not allow the positioning of a window of the required size in the desired location.
As a result the designer comes to realise that the problem of providing a view
from the living room has other aspects and its solution may involve finding a more
appropriate layout for the house on the site, or the redesign of the structural system
in a way which will accommodate the desired window. The formulation of both the
problem and the solution may therefore change as a consequence of an attempt to
solve a particular problem.

IThis example is based on one given by Bazjanac (1974).



It might be argued that in this case the original formulation of the problem was
unrealistic and that an experienced designer would approach the problem at a more
appropriate level. However such an argument misses the point. In trying to develop
a solution to a particular design problem even the most experienced designer will
gain new insights which necessitate the redefinition of the problem and suggest
alternative solutions. The need to understand (at whatever level) the details of a
particular case and how they interact are in a sense what makes a design problem
a design problem.

As a solution develops it provides an increasingly detailed context against which
to test the designer’s hypotheses, and the evaluation of a proposal can result in
the discovery of previously unrecognised relationships and criteria. In a sense later
decisions are constrained by earlier decisions in that they are taken within the con-
text of an existing partial solution, and each decision further limits the range of
possible alternatives. Solutions to particular subproblems are apt to be disturbed
or undone at a later stage when new aspects are attended to and the considera-
tions leading to the original solution are forgotten or not noticed. Such side effects
accompany all complex design processes. As a result, while the final solution may
satisfy all the requirements that are evoked when it is tested, it may violate some of
the requirements that were imposed (and temporarily satisfied) at an earlier stage
in the design. The designer may or may not be aware of these violations. Other
appropriate design criteria may simply remain dormant, never having been evoked
during the design process. The development of a design is thus constrained by what
best fits the knowledge the designer has at that time.

The formulation of the problem at any stage is not final; rather it reflects the
designer’s current understanding of the problem. As the design progresses the
designer learns more about possible problem and solution structures as new aspects
of the situation become apparent and the inconsistencies inherent in the formulation
of the problem are revealed. As a result, designers gain new insights into the problem
(and the solution) which ultimately result in the formation of a new view; the
problem and the solution are redefined. This process of exploration and redefinition
continues until one or more of the following conditions is met (Bazjanac, 1974):

e the incremental gain in knowledge has become insignificant and the under-
standing of the problem (and the solution) cannot change enough to warrant
further redefinition. (i.e. the designer has reached the limits of his or her
understanding); or

e the available resources (primarily time) have become exhausted.

There is no meaningful distinction between analysis and synthesisin this process;
problems and solutions are seen as emerging together rather than one logically
following from the other. The problem is explored through a series of attempts
to create solutions and understand their implications in terms of other criteria.
The designer comes to understand the critical relationships and possible forms as
a solution evolves. Between generic solutions planning is less a search for the best
solution than an exploration of the compromises that give sufficient solutions. These
explorations help the designer appreciate which requirements may be most readily
achieved. As part of this process, the designer learns which criterion values will
achieve the design requirements and how much variation of these values can be
tolerated while still achieving acceptable performance, the implications of achieving
the current goal, and any other decisions required to make the attainment of these
goals consistent with the existing solution.

Learning more about the structure of the problem is the most important part of
this process. The fundamental objective becomes one of understanding the structure
of the problem, with a major part of the effort in design being directed towards



structuring problems and only a fraction of it devoted to solving them once they have
been structured (Simon, 1970). The design process can be viewed more generally as
a process of discovering information about problem structures that will ultimately
be valuable in developing possible solutions.

4 Knowledge in Design

The generation of solutions draws on an extensive knowledge of design methods,
strategies and solutions to previous problems. Design proposals are not produced
blindly but result from a general understanding of the kinds of solutions which
may be appropriate in a given situation, and how these solutions may be pursued.
An important component of this knowledge is what might be termed ‘compiled
experience’. The role of a priori knowledge derived either from a familiarity with
related problems or, in the form of published guides and standards, has been widely
recognised in studies of design. Foz (1972) has shown how exploration of the prob-
lem evokes previously known solutions from memory. These examples are used as
‘guides’ or ‘templates’ for analysing or developing possible solutions in terms of the
problem requirements. Akin (1978) discusses the use of ‘problem transformations’,
which “make the current solution more specific, such as a precompiled solution,
an analogous solution, a generic solution etc. ... if explicit transformations are
not possible at the time, use previous experience to assume that certain aspects
of the current solution can be further specified”. More recently, Gero et al (Gero,
1987; Gero, Maher & Zhang, 1988; Oxman & Gero, 1988) have proposed that design
knowledge is stored and retrieved in a series of abstract schemata called ‘prototypes’
— “generalised groupings of elements in a design domain ... from which instances
of elements can be derived”.

These approaches to design may be broadly characterised as ‘knowledge-based’,
in viewing the design process as a series of problem transformations governed by
‘rules’ or ‘codes’ linking design solutions and abstract requirements. There are clear
parallels between, for example, Foz’s ‘templates’, Akin’s ‘problem transformations’
and Gero’s concept of ‘prototypes’. Common to all these approaches is the idea that
design proceeds through the utilisation of an organised body of a priori knowledge,
which is used both to structure and understand the design problem and which forms
the basis of design hypotheses. In this view there exists at any given time a list of
current goals together with a (potentially very large) set of heuristics, strategies,
previous examples etc. embodying a set of perceived relationships between the
solution and criteria spaces. These relationships function as ‘production rules’,
mapping a problem expressed in terms of abstract requirements onto some solution
or class of solutions which satisfies these requirements. The boundary between
the criteria and solution spaces moves to include as criteria solutions to previous
problems, as the problems represented by the criteria are reduced to sets of simpler
subproblems whose solution is known or which are at least easier to solve. This
process continues until no further reduction is possible or until the resulting problem
is deemed to be no longer the concern of the designer; e.g. the problem of how to
design a beam to support a given load or the problem of how to construct a wall of
a given size in a given position.

Steadman (1979) has argued that in architectural design this body of general
or collective knowledge is perpetuated through architectural education, architec-
tural journals and publications and the study of existing buildings. However it is
not, with certain exceptions, of an organised, explicit or scientific nature. Rather,
empirical experience of a range of related designs provides a body of knowledge
and understanding on the basis of which it is possible to build a generalised theory
(or theories) of a class of artefacts, which is used to extrapolate, beyond the tried



cases, to hypothetical but related designs yet to be constructed. It is this body of
knowledge, concerning, for example, the relation of physical performance to shape,
which informs the creation of solutions.

However when we turn our attention to a detailed consideration of these rules
a major difficulty immediately becomes apparent. Design, by its nature, is largely
concerned with the specification of objects that are unique. (If an object already
exists which is recognised as satisfactorily achieving all the design goals there is by
definition no design problem.) The question then arises: how can any necessarily
finite collection of relationships cope with the infinite variety of possible design
problems?. Or, more precisely, what happens when no rule can be found which is
appropriate to the current problem.

A complete answer to this question is impossible given our current understanding
of the design process, however we shall attempt to develop a small part of such an
answer in the remainder of this paper. Briefly, we shall argue that, in general, design
can only proceed through the development of new relationships and strategies within
the context presented by the design problem. In the remainder of this paper we
present a model of the development and application of design knowledge based on
the successive refinement of a set of heuristic rules and embed this model within
the model of the design process proposed by March (1976).

5 The Nature of Heuristics

An heuristic is a process or procedure that may solve a problem, but offers no
guarantee of doing so (Newell, Shaw & Simon, 1963). The study of heuristics as a
separate discipline effectively began with Polya (1945) who traced its origins back to
Liebnitz, Descartes and even Pappus. More recently Pospelov and Pushkin (1972)
have tried to define the field as “the science which studies the laws governing the
design of new actions in new situations”. In the main experience has tended to
come from fields other than design, most notably mathematics (Davis & Hersh,
1980; Polya, 1945), and artificial intelligence (Lenat, 1982). Despite the major
differences in subject matter and approach, we shall argue that the results of these
studies are of relevance to design.? The material in this section draws on the work of
Lenat (1982; Lenat, 1983a; Lenat, 1983b). Below we present a summary of Lenat’s
work and in subsequent sections we attempt to develop these ideas and relate them
to the design activity.

Lenat (1982) argues that the power of heuristics results from a kind of two
dimensional continuity over situations and actions: “If an heuristic H was (or would
have been) useful in situation S then it is likely that heuristics similar to H will be
useful in situations similar to S”. In other words, if we could somehow graph the
function appropriateness(action, situation), that function would be continuous in
both variables and vary very slowly. This is obviously an idealisation; there are many
ways of characterising situations (the problem domain, the difficulty of the problem,
the time available for its solution etc.) and many measures of appropriateness (the
quality of the resulting solution, the computational cost of the using the heuristic
etc.) with the result that we can do little more than estimate the utility of a
particular action on a few criteria in a small number of situations. Nevertheless,
Lenat argues that this assumption underlies much of the utility of heuristics in
problem-solving and that it is often useful to behave as though the assumption were
true, i.e. to behave as though it were true that the function appropriateness(action,
situation) exists and is continuous and time-invariant).

?Note that in doing so we do not wish to adopt a ‘realist’ position with respect to design rules.
We are not implying that the ‘rules’ used by designers can be made explicit or even that such rules
exist, only that the behaviour of designers can be modelled using such rules.



Lenat develops several corollaries of this assumption:

Corollary 1 If an action A is appropriate in a situation S, then A is also appro-
priate in most situations which are very similar to S.

For a given action, its appropriateness is a continuous function of the situation.
If the situation changes only slightly then the judgement as to which actions are
appropriate changes only slightly. This is the basic justification for reasoning by
analogy; if something worked in a similar situation in the past, it is likely that it
will work in current problem.

Corollary 2 If an action A is appropriate in a situation S, then so are most actions
which are very similar to A.

For a given situation, appropriateness is a continuous function of actions. If an
action is particularly useful (or harmful) in some situation, it is likely that any
very similar action will have similar consequences. This is the basic justification for
‘satisficing’, of accepting a solution which is ‘good enough’; given that any similar
action will, in general, have similar consequences, it is not worth searching for an
optimal answer.

Corollary 3 If an action A would have been appropriate in a situation S, then
the rule “If the current situation is similar to S then try A” may be
useful in the future.

It is cost effective to form and use heuristics which would have helped in the past.
This is basic justification for the utility of memory. If we conclude (via hindsight)
that a rule would have been useful in the past, then it is likely that it will be of use
in the future.

In the remainder of this paper we attempt to extend this framework to design.
We begin by considering the nature of heuristics in more detail.

5.1 The Power of Individual Heuristics

A situation is a description of a problem or task: a list of goals together with the
set of constraints, background assumptions and any existing partial solution which
forms the context of the problem. For a body of heuristics to be effective in in
guiding action, each heuristic must specify those situations in which its action(s)
are especially appropriate or inappropriate. We can view an heuristic as a simple
production rule of the form:

if (condition) then (action)

If the condition is true (or approximately true) in the current situation then the
action may be an appropriate one to try. Such rules may be either analytic or
synthetic. For example, if the task is to design a beam capable of supporting a given
load, the heuristic would be thought of as synthetic. Conversely, if the objective is
to predict the heating energy requirements of a proposed design the heuristic would
be thought of as analytic. In both cases there are a variety of approaches which
could be used, ranging from rules of thumb to sophisticated finite element methods.
More generally, there are also rules which are useful in less well defined situations;
for example, what kind of structural system to use given the type of building and
the cost constraints, or the evaluation of the layout of a building given the design
requirements and the characteristics of the site.



Each heuristic will be more or less useful in a given situation. The utility
of an heuristic is zero in some situations (where the heuristic is not considered
relevant, i.e. the condition is false) and is more or less positive in others (where
the condition is true).®> A problem can be characterised in many different ways
(e.g. the scope of the problem, the degree of difficulty, the resources available for
a solution etc. — including the context of any partial solution which might exist).
A given problem can be identified with a particular set of values on each of the
situation dimensions. Naively we might classify problems into easy problems and
hard problems or structures problems and environmental problems for example.
Similarly, there are many different ways of characterising the utility of an heuristic
(e.g. its reliability, the resources required to perform the action etc.). Each heuristic
will have a particular level of utility on each utility dimension for a given problem.
For example, in a given situation a particular heuristic might be quick to apply
but unreliable. Note that while there may appear to be an overlap — the speed
with which a solution is required vs. the speed with which a solution is produced
for example — these dimensions are distinct. Situation dimensions characterise the
problem whereas utility dimensions characterise the heuristic.* If there are n utility
dimensions and m situation dimensions then the utility of an heuristic on a given
utility dimension can be represented by a point in an n + m-dimensional space. For
a given problem we will be at some point on each of the situation axes situation; .,
and the utility of an heuristic on some utility measure wtility; is given by

utility, = fu(heuristic, situationy _,)

For any pair of utility and situation dimensions (utility;, situation;) and some as-
signment of values to the remaining situation dimensions we can imagine graphing
the utility of an heuristic on the dimension wtility; for varying values of situation;.
For n utility dimensions and m task dimensions there are n x m such power curves
for each heuristic. Note that in many cases this will be a constant function. For
example, while the reliability of an heuristic might be expected to depend on the
problem domain or the degree of difficulty, it is unlikely to be affected by the time
available for a solution.

The utility of an heuristic in any given situation is a function of both the utility
of the condition and the utility of the action

utility, = f,, (utility,., utility,, )
where

utility;,, = f.(condition, situation,_,,)

utility;, = f.(action, situation)_,,)

If, for example, both the condition and the action of an heuristic have an associ-
ated cost in time or resources and an associated reliability then the total cost of
using the heuristic will be the the cost of evaluating the condition (to find out if
the situation is of the right type) plus the cost of performing the action, whereas

3Lenat argues that the utility of an heuristic can be negative in some situations, i.e. the heuristic
appears to be relevant (the condition matches the situation) but is in fact counterproductive —
it gives the ‘wrong’ or a poor solution, or takes longer than alternative approaches etc. depending
on the utility dimension being considered. However this implies a normative theory of utility, and
it is not clear from Lenat’s argument where the zero point should be located. Assuming that we
have utility axes at all, it is simpler for all utilities to be positive with axes ordered as required
(e.g. lower cost = greater utility).

4We could chose to view the range of situations in which an heuristic is applicable as a kind
of utility, with those heuristics applicable in a wider range of situations having greater utility.
However this would obscure certain aspects of the argument.



the overall reliability of the heuristic may be the product of the reliability of the
condition and the reliability of the action. An heuristic such as “if the problem is
like one we have solved previously, then copy or adapt the previous solution” may
have high utility (e.g. low cost or high reliability) for ‘typical’ problems. The overall
cost of the heuristic will depend on the cost of the search for the previous solution
(the condition) and the cost of copying or adapting that solution (the action). The
reliability of the heuristic will be some function of the reliability of the search (e.g.
the percentage of previous solutions examined, or the failure to notice significant
differences between the previous situation and the current problem) and the relia-
bility of adapting the previous solution (e.g. were any irrelevant details carried over
from the previous solution).

Estimating the utility of a condition is often difficult. While it may be possible
to determine the cost of evaluating a condition, it is often much harder to estimate
its reliability in selecting the intended set of situations. This is essentially the utility
of planning, of determining how much time time or resources should be allocating to
deciding what to do next — how long to spend classifying the situation, or searching
for ways in which the current situation is similar to or different from previously
encountered situations. The utility of planning varies both with the difficulty of
the problem and cost of the proposed action. For trivial problems, planning may
be largely a waste of time (almost any heuristic will solve the problem), however
for complex problems or in situations where there are many interacting problems
planning may be essential to avoid wasted effort. Estimating the anticipated utility
of an action in a given situation is also often difficult. The estimate of utility may
be based simply on the subjective experience — how many times has the action
been successful in similar situations in the past — or it may be some measure of the
cost of performing the action in time or resources. If an action has frequently been
successful in similar situations in the past, it may be a good heuristic to try in the
current situation (depending on other factors such as the time required to perform
the action against the time available to solve the problem). On the other hand if
it is only occasionally successful, but on those occasions where it did succeed, it
produced a ‘good’ solution and is easy to apply, it may still be worth trying.?

We can trade-off utility between the condition and action to achieve a given level
of utility for the heuristic as a whole. For example, in solving structures problems
the heuristics “always use finite element methods” and “identify those situations
in which simpler analytic methods may be used” may produce an equally ‘good’
solution in the same amount of time. However, in general, a good heuristic is
one in which there is a high degree of overlap between those situations where the
condition has high utility and those situations where the action has high utility. If
the two sets only partially overlap, the resulting heuristic will be unreliable — in
some situations it will be successful while in others it will fail (e.g. take too long or
produce the ‘wrong’ answer). If the two sets of situations are disjoint the resulting
heuristic will have low or zero utility even if the condition and action are themselves
successful. As the cost of the proposed action in time or resources increases, so it
becomes worthwhile spending more time deciding which approach to adopt.® Finite
element methods are applicable to most structural design problems, but they are
cost effective only in those situations where simpler methods are unavailable and
careful consideration is often given as to whether the problem is one which requires
such methods.

5If on the other hand it is expensive to apply, it also suggests that it may be worth trying
to isolate the characteristics of those situations in which it was successful. Such heuristics about
generating heuristics are discussed in more detail below.

6Unless, of course, there are no alternative approaches available. In such a situation, the risk
of failure increases dramatically.



5.2 The Space of Heuristics

In reality, of course, a designer will draw on a wide range of heuristics in solving
any given problem. In general a set of heuristics will have higher utility than any
of its members considered in isolation. Different heuristics are applicable in dif-
ferent situations and using several heuristics in combination may be more effective
than any single heuristic, for example if the action of one heuristic matches the
condition of another. However the overall utility of a set of heuristics is not sim-
ply the sum of the utilities of the individual heuristics. The interactions between
heuristics are often quite strong and independence is the exception rather than the
rule. Often two heuristics will be different methods of achieving the same result
and the overall utility of the set is not greatly increased by having both of them
present.” While heuristics sometimes interact synergystically, it is often the case
that there are several internally consistent but mutually inconsistent sets of heuris-
tics within the total set. Using only heuristics from one of these sets will result in a
consistent solution to the problem, but unstructured use of heuristics from different
sets results in inconsistencies within the solution. Such interactions are common
in domains such as design, where the attempt to achieve a particular requirement
often generates problems elsewhere. Simon (1973) argues that good heuristics are
those which minimise such interactions and that part of learning to be a designer
is learning which approaches to solving the problem are mutually consistent.

Using a particular heuristic in a given situation constrains which other heuris-
tics can be employed in the new situation which results. As in a game of chess,
any particular move in a given situation constrains future moves. In theory, there
is, in any given situation, a best possible move, which can be found by exhaustive
enumeration of all possible moves and countermoves from the current position. Sim-
ilarly, in any given design situation, we can imagine computing the ‘global utility’ of
an heuristic such that the heuristic with the highest global utility ultimately leads
to the best overall solution achievable in the current situation. Note that ‘best’
here means best on all utility dimensions (weighted for the relative importance of
each utility dimension) as these appear in the context of the completed design, i.e.
modified by the designer’s increased understanding of what is possible and the im-
plications of the various alternatives. Computing such a global utility is obviously
impossible — it would involve the exhaustive enumeration of all designs possible in
the current situation (i.e. all possible designs, including backtracking and the aban-
donment of the current partial solution) — and would require a well defined space
of possible designs. Each individual design decision must be made in the context
of the problem as a whole. This context includes both the problem specification
and the rest of the design solution — both those decisions made to date and those
that will be made in the future, as the decision not only has to satisfy the current
goals it must continue to satisfy them in the context of the final solution when all
of the remaining decisions have been made. Not only is the set of future decisions
undefined but the part which is defined, the current problem definition, will change
during the course of the design as it is modified by the designer’s increased under-
standing of the implications of the current solution. Like chess programs, designers
must work with essentially local information and any estimate of the utility of an
action is typically limited to the immediate consequences of that action.

More generally the underlying structure of the space of heuristics — the number
and type of heuristics and the concepts they relate — depends on how the space
of concepts is conceptualised into problems. We can associate with each heuristic
one or more domains, or ‘sets of problems’, for which the heuristic has non-zero
utility, where ‘domain’ is defined as a range of values for the problem dimensions of

"However the redundancy provided by multiple heuristics can be important in the (consistent)
attainment of multiple goals.

10



subject matter, complexity, time available for solution etc., which together bound a
region of the problem space. The set of situations (defined as a range of values for
each situation dimension) for which a heuristic achieves some given level of utility
on each utility dimension is given by

situationy _y, = fq(heuristic, utility,_,,)

Conversely, the set of heuristics appropriate to a given problem or set of problems
(i.e. to a domain) is given by

heuristic = fy(utility, _,,, situation; _,)

To solve any given problem, it is necessary to find an heuristic which has satisfactory
performance on all of the relevant utility axes. In other words, given a minimum
performance level for each utility dimension and the position of the problem on each
of the situation dimensions, the set of heuristics relevant to this problem lie within
the hypervolume defined by the situation/utility parameters.

The set of heuristics associated with each domain can be thought of as being
in some sense relevant to the set of problems which constitute the domain (and all
its subsets) in having non-zero utility for that set of problems. Domains do not
partition the space of concepts — in a sense everything is linked to everything else.
Rather, they are largely conceptual devices for structuring our consideration of the
problem. For example, it is unlikely that in general a detailed consideration of
window type will be required in general layout planning, although it may be. Lenat
(1982) argues that one of the major tasks in mastering any domain is learning the
proper level(s) at which to state and use heuristic knowledge. If the heuristics are
too small their domain of application becomes too narrow to make them worth
remembering relative to the range of problems associated with the domain. They
stop being meaningful pieces of knowledge and risk having many stray interactions.

A problem, such as ‘scheme design’ or the ‘design of a structural system’; can
be seen as a meta-level name of a set of object-level concepts. The attributes of the
problem, such as level of difficulty, etc., are in fact attributes of this set of concepts.?
The problem of, for example, ‘designing a structural system’ or, more generally, of
‘structural design’, can be viewed as the problem of finding some relationship be-
tween a structure and a set of elements comprising that structure; where ‘structure’
and ‘elements’ are variables ranging over possible structures and elements respec-
tively, that is, over subsets of the set of structural concepts. The task of ‘solving
a problem’ becomes one of relating a set of goal concepts to some, as yet unspec-
ified, set of hypotheses. While the set of possible hypotheses does not form part
of the current problem description, the set of possible or candidate concepts from
which the hypotheses are constructed is known in some sense through experience
of similar problems. It is this set of relevant concepts which forms the problem
‘field’ or domain, and which an heuristic attempts to structure by partitioning it
into the (sub)set of concepts which will form part of the current solution, and those
that will not. Heuristics can be seen as structuring relationships between sets of
concepts (between sets of ‘wholes’ and ‘parts’ or ‘causes’ and ‘effects’), and hence
the relationships between heuristics — viewed as meta-level relationships such as
more-general-than, more-powerful-than — are largely determined by the resulting
partitioning of the space of concepts into problems. A corollary of this is that the
way problems are seen in large part determines the way in which they will be solved.

8The term ‘problem’ as used here refers to the class of problems associated with a given domain
independent of any particular goal or set of goals.
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5.3 The Space of Situations

Different heuristics will have different utilities in a given situation. If an heuristic has
lower utility than another on all utility measures in all situations then we say the first
heuristic is dominated by the second. Clearly such a set is context dependent. New
approaches are always being discovered which are (or are perceived to be) better
in some respect than those they replace. However for any given set of heuristics
(representing some understanding of the world or level of problem solving ability)
it is possible to extract the non-dominated subset. Such heuristics can be thought
of as the ‘best available’. This is clearly an idealisation, however nothing hinges on
it and it simplifies the presentation.

Within such a set of non-dominated heuristics there is a trade-off between gen-
erality and power. An increase in utility along any given utility dimension (e.g. one
with a better chance of success) can only be achieved by using an heuristic which
has lower utility on some other dimension (e.g. it is more expensive), or is applicable
to a narrower range of problems, or both. What seems powerful or efficient in a
general context becomes less remarkable in comparison with heuristics of similar
range. A more general heuristic applicable over a wider range of problems generally
has a lower utility for any given problem while more specific heuristics with higher
utility are limited to a narrower range of problems.’ This much seems borne out by
everyday experience — there are no all-powerful problem solving strategies which
are applicable in all situations or to all problems. If we take the range of an heuristic
to be its domain, then its total utility — defined as the multiple integral of all the
power curves of the heuristic — is limited and depends on the relative importance
of (or more accurately the trade-off between) each of the utility axes in the context
of the current problem/solution. The total utility of an heuristic, u; is given by

n
Uy = E Ujw;
i=1

where wu; is utility on the i-th utility measure and w; is the weight or relative
importance of that utility measure in the current context. Whether a gain or loss
on any particular utility dimension represents an increase in total utility depends
on its implications for other dimensions. For example, for a very good solution, cost
may be less important.'®

Lenat (1982) argues that in any given situation we should apply the most pow-
erful heuristic available first and only resort to those with lower utility if the initial
attempts to solve the problem fail. Of course it is unlikely we would know the power
of an heuristic precisely in each possible situation. It is more likely that we would
have some knowledge of the average power of each heuristic, and would use that
as a guess of how useful each one would be in the current situation. If we assume
that all heuristics are non-dominated, this corresponds to trying the most specific
heuristic first, followed by the next most specific and so on.

More importantly, the trade-off between generality and power means that for
any given set of heuristics, there exist problems which cannot be solved using those
heuristics. That this is so can easily be demonstrated simply by selecting a problem
which is sufficiently difficult relative to the domain of the heuristics. The existence

9Tn some circumstances the utility axis may have some absolute desirable point along it, e.g.
some guarantee of correctness or efficiency. If an heuristic exceeds this value (even if only over a
relatively narrow range of tasks) the way we view the heuristic may change; for example, we may
term it ‘algorithmic’ or ‘real time’. From this viewpoint algorithms are merely heuristics which
have sufficiently high utility for guarantees to be made concerning their use, albeit in a restricted
set of situations. conversely, one can try to apply an algorithm outside its domain of applicability,
in which case the result may be useful and the algorithm is then used as an heuristic (Lenat, 1982).

10A belief held by many architectural students.
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of such problems does not necessarily present any difficulties for an heuristic-based
model of design, so long as most design problems can be solved using the available
heuristics. This is after all what we would expect; heuristics are derived from
experience with previously encountered problems. However, we shall argue that
many if not most design problems cannot be solved using the available heuristics.
This apparently paradoxical conclusion — that most design problems cannot be
solved using existing design knowledge — is a consequence of the generality vs.
power argument.

There are an infinite number of design problems associated with any given do-
main, differing on one or more of the situation dimensions, or the minimum utility
required on any given utility dimension, or the relative importance the designer
assigns to these utilities. We can imagine that a typical heuristic will be capable of
solving some non-trivial percentage of the problems associated with its domain if
it is to be worth remembering in the first place. However, while the set of heuris-
tics associated with a domain may typically be successful in solving many of the
problems occurring within that domain, each design decision must be made in the
context of the design problem as a whole. The interaction between criteria which we
have argued is a defining characteristic of design problems means that, in general,
the effective domain of an heuristic is the design problem as a whole, and this can
vary in many more ways than the putative domain of the heuristic. For example,
the range of situation dimensions may be extended to include “problems in which
heuristic 101 has already been employed” or utility measures normally falling out-
with the domain of the sub-problem such as “adequate utility on utility dimension
u, (in a problem in which heuristic 101 has already been employed)”. This does
not imply that the total utility of each heuristic must somehow be increased. In
many, but not all problems, the attainment of adequate utility on utility dimension
u, will be irrelevant to solving problem in the given domain. Rather there are
many more ways the total utility of an heuristic might be distributed within the
situation/utility space. Each unique distribution requires a unique heuristic.!! An
heuristic capable of producing the ‘right’ solution in all these situations would have
to have high utility on all the relevant situation dimensions, but this is impossible
because the total utility of an heuristic is limited. It has significant utility only
because it is specialised to a small range of problems. If this is so, the question then
arises: given that the total utility of an heuristic is limited, how many heuristics
would be required for us to be sure of being able to assemble a consistent set which
solves the problem?

The total utility associated with an heuristic may be distributed in a number of
different ways. For example, some heuristics may be very good for a small range of
problems while others are of lower utility but are appropriate in a wider range of
situations. If we assume that an heuristic must have some non-trivial level of utility
on some utility dimension to count as any sort of solution to a problem, then the
number of heuristics required to solve the range of problems notionally occurring
‘in’ a given domain will typically be quite large. For example, if the total utility
of non-dominated heuristics tends towards a constant, then for any given level of
utility relative to some domain the number of heuristics required to completely cover
the problem space will be a function of the power of the level of utility required:
doubling the utility required along some axis increases the number of heuristics by
a factor of two; doubling the utility required on all utility dimensions increases the
number of heuristics required by a factor of 2" etc.'? Since there are many ways

11 Note that this rules out the possibility of generating an infinite number of solutions by simply
combining ‘standard’ heuristics associated with each domain.

12This assumes that all problem dimensions are equally important and that there is a uniform
distribution of problems within the domain. However in reality it is likely that some will be more
important than others and in some cases (e.g. problems of extreme difficulty) there may be no

13



in which the situation can vary (i.e. the set of typical problems is large) and the
volume of an heuristic is limited, it seems unlikely that an appropriate heuristic will
be available at all stages of the design process. Note that this argument applies at
all levels of abstraction from layout to detail design if we consider the power of an
heuristic relative to its domain.

The more inter-dependent the criteria are, the greater the number of heuristics
required to solve any given problem. Even if we assume, as seems likely, that prob-
lems are not uniformly distributed along the utility and situation axes, the number
of possible problems is still very large. We would therefore require a corresponding
number of heuristics to be sure of solving a typical design problem selected at ran-
dom from a domain. Leaving aside the problem of simply remembering this set of
heuristics (for each domain) we are left with the difficulty of explaining how such
a set could ever arise. If heuristics are derived from experience with a range of
problems, knowledge of such a set would seem to imply experience of all possible
problems. If, as seems likely, this is impossible, we are forced to conclude that we
can never have enough rules to be sure of solving any given problem.!3

If a suitable heuristic cannot be found, the criteria are deemed to be inconsis-
tent, i.e. no solution exists within the solution space defined by the heuristics. This
happens when no way can be found of achieving a particular requirement or set
of requirements within the constraints imposed by the rest of the solution context.
This may either be because while the available heuristics are capable of achieving
their immediate goals, the resulting ‘local’ solutions have unacceptable consequences
elsewhere (solutions can be found for each of the sub-problems considered in isola-
tion, but these partial solutions are mutually inconsistent), or because no way can
be found of achieving a particular goal even in the absence of other constraints (the
problem lies outwith the scope of any known heuristic). Such conflicts are common
in design, indeed we have identified the existence of conflicts between criteria as
one of the characteristics of design problems (Logan & Smithers, 1989). In such a
situation the designer must either modify the problem, i.e., relax one or more con-
straints until the current solution meets the revised design requirements, or modify
the means available to solve the problem by modifying an existing heuristic or cre-
ating a new heuristic. (In many situations, it will be necessary to modify both the
requirements description and the available problem solving strategies to achieve a
consistent solution.) Often when we start solving a problem, the criteria are incon-
sistent. When we are finished, the solution and criteria are consistent either because
we relaxed the criteria or because we found a new way to solve the problem which
satisfies the goals. Problems which were perceived as inconsistent or contradictory
cease to seem So.

6 Heuristic Formation and Learning in Design

The results outlined in the previous section, i.e. the need for domain specific heuris-
tics and the existence of problems which cannot be solved using a given set of
heuristics, are both consequences of the generality vs. power argument.!* Yet
problems are solved and there is considerable evidence from cognitive psychology
and design research that designers do use some form of prestructures or relation-

heuristics available.

13Even if such a set of heuristics existed, the problem of finding the ‘right’ heuristic to solve
the current sub-problem remains. As we saw in section 5.2, while heuristics are evaluated on their
global utility, they are of necessity selected on their local utility as part of the design context is
unavailable when the decision to use the heuristic is taken.

l4Note that this conclusion is not dependent on the details of the appropriateness vs. situa-
tion curves, but rests on the much more general notion that any approach to problem solving is
restricted to some (limited) range of problems.
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ships to structure and solve their problems. In an attempt to explain this paradox
we present an alternative view of the development and use of prestructures in design
which accommodates these observations and theoretical results, and illuminates the
critical role of the learning process in design.

Design problems by definition are unique. We have argued that it is unlikely,
given the large number of criteria which form the definition of a design problem,
that any given problem will be identical to a previously solved problem. However
in general the designer will have solved similar problems in the past and will use
this experience as a guide in solving the current problem. We hypothesise that
there exists a set of ‘core’ heuristics associated with each domain which have shown
themselves to be useful in the past and worth remembering, and that these core
heuristics are adapted (to a greater or lesser extent) to the problem at hand. For
each problem domain, such as layout design, structural design, materials selection,
detailing etc. whatever its level of abstraction, there is a collection of rules of thumb,
typical examples and relationships which provide a more or less powerful heuristic
core for that domain, and which are adapted to the details of any given problem.

The set of heuristics is constantly being adapted to new problems and situa-
tions, and the core heuristics are continuously refined through experience gained
in new situations. For example, the strategies and relationships commonly used in
the design of a structural system will be different from those used in determining
the arrangement of elements in a particular system, but in each case the rules must
be modified to accommodate the details of the particular problems to be solved.!®
Something of this sort seems to be required to explain the use of previous experience
in solving entirely new problems (as opposed to simply copying old solutions), and
indeed how design or problem solving is possible at all (Petrie, 1979). Whether it
is more useful to view the generation of new heuristics as the definition of a new
(sub)domain or the adaptation of an existing heuristic is an interesting question.
The latter course has been adopted here to highlight the distinction between opera-
tions over domains (reasoning by analogy) and operations within domains (adaption
of existing heuristics). We have argued elsewhere (Logan, 1987) both of these op-
erations can be considered forms of reasoning by analogy carried out at different
levels.

At its simplest the core can be seen as simply representing all that a designer
knows about a particular class of problems. More generally the core represents
some compromise between the number of heuristics required to adequately cover a
domain (and the associated overhead in remembering and searching for any partic-
ular heuristic), and the effort involved in adapting a small number of general rules
to a wide variety of situations (or reinventing the wheel). We further hypothesise
that such specialisations, or more generally ‘adaptions’ of existing heuristics, are
necessary in all goal directed heuristic systems, and that the development of these
problem specific heuristics is the motivation for analysis through synthesis, and
underlies the process of understanding the structure of a design problem identified
above as central to the design process.'6

The definition of a design problem can be viewed as a point in n x m dimensional
space — that is, as a specification for an heuristic which will achieve a given level
of ‘performance’ in a given situation, (typically an heuristic which has a reasonable
chance of providing the ‘right’ answer to the current problem). The process of
adapting an existing heuristic can be viewed graphically as moving its characteristic

15Note that these ‘core heuristics’ do not necessarily have to have shown themselves useful in a
wide range of situations; there exist some specialised but very powerful heuristics which are useful
in recurring problems.

16The formation of new heuristics is also closely related to the formation and use of analogies
in the process of ‘reasoning by analogy’. This is discussed in more detail in the next section.
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function left or right to peak in a different situation.'” This process of adaption can
be seen as a natural extension of the ‘central assumption of the theory of heuristics’
presented in the previous section: i.e., if an heuristic H was (or would have been)
useful in situation S then it is likely that heuristics similar to H will be useful in
situations similar to S.

Several authors (Hillier & Leaman, 1974; Steadman, 1979) have argued that
there exist cultural stereotypes or ‘templates’ which form the basis of design solu-
tions in a way which could be considered analogous to the core heuristics discussed
above. Hillier and Leaman (1974; Hillier & Leaman, 1976) have characterised this
process as one of the elaboration and modification of cultural stereotypes or ‘tem-
plates’. They argue that that the designer is situated in “a richly connected universe
whose connections are those dissimilar domains that must be related in design; ac-
tivity and space, psychology and climate and so on”. These structures are embedded
in the language the designer uses and in the instrumental set—the technologies or
kits of parts and typical design solutions to which his systems of representation re-
fer (Hillier & Leaman, 1974). Even to name an architectural problem—say, ‘design
a school’—implies a whole range of solutions which will be more or less immedi-
ately activated by the designer’s prestructures. These structures form an evolving
typology of standard solutions to recurring problems in design, modified by the
designer’s experience, ideology and the physical, social, and cultural environments
which form the context of design. In this view design is seen as the process of dis-
covering “the appropriate transformation or ‘unfolding’ of prestructures in relation
to the constraints imposed by the environment of the problem” (Hillier & Leaman,
1974). Both the transmission and transformation of prestructures form a process
of elaboration and discovery which underlies the active formation of relationships
and within which every solution may be unique.

Similarly Schon (1988) argues that designers make use of ‘design rules’ to “rea-
son their way to moves, draw out consequences of possible moves [and] make and
evaluate design decisions”. Rules are derived from types. Types function as leading
ideas to generate sequences of design experiments including “chains of reasoning,
consideration of possible moves, detection of consequences and implications and
choices”. They guide the selection of rules, provide the information necessary for
their application and provide the basis for challenging and correcting them. Rules
are seen as contingent and contextual; they are held tentatively and are subject to
exceptions and critical modification. However Schon argues that while designers do
share rules, different designers also use different rules. While some rules may be
common to many designers (and may determine the form individual development
can take), designers develop many individual strategies for solving problems as a
result of their education, professional experience etc.

In all these views, design is seen as the modification or refinement of the de-
signers’ general codes and relationships within the context of the current problem.
More generally we can see the problem of design as one of learning how to develop
these basic prestructures to solve a particular problem. Indeed, as has already been
noted, the development of such an understanding of the structure of the problem is
the objective of the process we have termed ‘analysis-through-synthesis’

7 Induction and Rule Formation

In this section we attempt to develop a model of the learning process described
above within the framework of the model of design outlined in previous sections. In

17This can be reinterpreted as finding a relationship which will link some solution space to a
given criterion space; or in object level terms, finding a relationship which structures the concepts
comprising the ‘problem domain’.
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particular we attempt to clarify the role of induction in the formation of relation-
ships between criteria and its relationship to the process of theory formation. In
doing so we shall try to show that in closing the cycle of abduction, deduction and
induction, the model proposed by March (1976) can be viewed as a simple model
of the design process (or more precisely the process of analysis-through-synthesis),
and hence of the development of the designer’s prestructures or solution strategies.

March’s model is based on the work of the American philosopher C. S. Peirce.
Peirce takes the Aristotelian syllogism:

x is y; y is z; hence z is z

as typifying deductive or analytic reasoning; the application of a general rule (y is
z) to a particular case (z is y) to give a logically determined result (z is z). The
deductive syllogism is based on the concept of necessary truth; that is that the
facts presented in the premises could not under any imaginable circumstances be
true without involving the truth of the conclusions. More simply, deduction can be
considered the inference of a result from a case and a rule. However Peirce argues
that inductive or synthetic reasoning, being something more than the application
of a general rule to a particular case, can never be reduced to this form and he
goes on to develop two further modes of reasoning which he terms abduction and
induction. Neither of these forms of inference are logically determinate. Abduction
reflects the reasoner’s presumption that a certain phenomenon exists to account for
his observations, given that a particular theory holds. Abduction is the inference of
a case from a rule and a result. Induction mirrors the reasoner’s search for a law to
account for the regularities among phenomena, and is responsible for engendering
new habits of thought. Induction is the inference of a rule from a case and a result.

March relates the three forms of reasoning proposed by Peirce to the context of
design in terms of their results:

1. The creation of a case or ‘composition’ which is accomplished by abductive
reasoning;

2. The prediction of results or a ‘decomposition’ comprising the characteristics
of the design which emerge from an analysis of the whole composition, accom-
plished by deduction; and

3. The derivation of rules or ‘suppositions’, an idea, a theory, or in the modern
usage a model, a type, accomplished by induction.

March argues that the designer uses his previous experience and knowledge of solu-
tion types in an attempt to produce a solution which satisfies the problem criteria.
Such a speculative design cannot be determined logically because the mode of rea-
soning involved is essentially abductive. It can only be inferred conditionally from
our state of knowledge and the available evidence. Deductive inference is then be
used to predict measures of expected performance by the application of further
models and theories to the particular design proposal. As the design proceeds new
relationships and criteria are added which may critically augment the original set
in the previous abductive phase. In the inductive stage the design and its predicted
characteristics are used to infer new generalisations and suppositions. General rules
are refined in the context of the current design solution as induction criticises the
original hypothesis from the abductive phase and provides more discriminating tools
for the next round of the cycle. In doing so it evaluates. “In itself a design, or
rather the set of pertinent characteristics by which it is perceived, has no value.
It assumes relative value through comparison with other designs both existing and
entertained, as well as with the environment as a whole. Indeed evaluation assumes
that suppositions about worth, preference and desirability can be inferred. It is
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these suppositions that form the basis of the abductive phase of designing. That is
to say the models required to produce design alternatives are value laden” (March,
1976). March characterises this as an iterative process in which there are constant
refinements and redefinitions of characteristics, design, and suppositions as the so-
lution evolves. The model is envisaged as “representing a critical learning process,
in that statements inferred at later stages may be used to modify those used in
earlier stages, and thus to stimulate other paths of exploration” (March, 1976).

However given the large number of criteria which form the problem definition it
is unlikely that the current problem will be exactly similar in all respects to any of
the previously solved problems which form the basis of the designer’s prestructures.
Indeed it can be argued that rules are inherently fuzzy in defining a relation between
two sets of concepts at a higher level of abstraction than that of either the individual
cases or results subsumed by the rule. It therefore seems unlikely that at the level
of its application, (as opposed to its level of definition), any rule will be a perfect
‘fit” for a given set of criteria, as the concepts involved in rule definition can be seen
as labels of fuzzy sets defined by a membership function.!® The means to solve the
problem will not exist and must be created. We will now consider this process in
more detail.

7.1 Learning and Analogy

In a sense all reasoning can be seen as what might be loosely termed reasoning
by analogy or reasoning from similar cases.!® In reality both situations and the
relationships between them are inherently fuzzy. Neither can be completely charac-
terised and our everyday inferences must rely on the various relations of similarity
between the current situation and the previous experience we are using as a justifi-
cation for our conclusions. We continually adapt existing rules from the domain of
interest (or indeed any other domains which are in some way considered relevant)
to the current situation. It is this adaption which we shall argue can be viewed as
a form of learning.

The designer begins by assuming that a rule which worked in a similar situa-
tion, or a rule similar to it, will work in the current situation. (This is in effect a
revised version of the ‘central assumption’ underlying Lenat’s ‘second order theory
of heuristics’: that “in a complex, knowledge-rich, incompletely-understood world,
it is frequently useful to behave as if appropriateness(action, situation) is continu-
ous and time-invariant”). Of course this approach is unlikely to give a completely
satisfactory answer, but it provides a starting point for the exploration of the im-
plications of a particular solution in terms of the relationships between criteria.2°
Subsequent modifications bring the relationship closer to the current problem. No
relationship can be characterised in absolute terms as ‘core’ or ‘problem specific’.
Both generic solutions and solutions to previously solved problems will, in general,
have to be adapted to the current problem context. Rather the process is recursive
in involving a series of successive approximations to the required relationship.?!
From this viewpoint learning by discovery can be seen as the refinement of such an

181t also implies that the alternative solutions resulting from the application of a rule will satisfy
the wider context of the rule criterion to differing degrees, and evaluation of a case within this
context can be interpreted as the redefinition of the membership function of a fuzzy set of solutions
in the context of a particular set of problem requirements.

9This of course includes the three forms of inference identified by March. The perfect match
required between a rule and a case or a case and a result can be seen as special cases of a more
general fuzzy matching procedure.

20This is the motivation underlying much of the process of analysis-through-synthesis identified
in section 3. The successive refinement of rules can be seen as a further corollary of the designer’s
inability to consider all the aspects of a design problem simultaneously.

21Petrie (1979) has argued that the use of analogy is basic to all learning, maintaining that it is
epistemologically necessary in relating the unknown to the known and familiar.
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analogy; the discovery of the errors and omissions in the initial model and to what
extent the structure of the new domain does in fact resemble the structure of the
domain which provided the initial analogy.

To simplify the exposition we shall assume that some appropriate rule has been
found or generated, i.e., we shall start with the assumption that a rule has been
found which matches the current result (abduction) or case (deduction), and we shall
restrict our attention to the adaption or refinement of a rule to a given situation.
More general cases await a more detailed treatment of analogy. Learning within a
domain can be viewed as a particular case of adaption or refinement of analogies or
guesses where there already exists a rich collection of similar relationships, which
differ only slightly from the current situation (e.g. which are valid over slightly
differing ranges of problem criteria) to serve as a basis for our conjectures.??

7.2 Maintaining Consistency in the Problem Model

Implicit in this view of learning as successive refinement is the idea of some kind of
independent check on the success or otherwise of a proposed rule. We require some
non-tautological way of assessing how well a case, (and hence a rule) achieves a goal,
or conversely how well a rule predicts a (known) result from a given case. If there is
only a single relationship linking two sets of concepts we have no independent means
of assessing the result of applying the rule. In any particular situation cases and
results derived using the rule are, in a sense correct by definition. More generally
such a relationship is difficult to modify or adapt to a particular situation as no
means exists of determining whether a series of modifications is converging on the
desired relationship. In practice rules usually form part of an interdependent system
of relationships which together comprise the body of knowledge associated with a
domain. Different rules express different conceptualisations of the relationships
within a domain. Some relationships will be specialised for generating hypotheses,
while others will be intended to be used analytically. Each individual rule will have
a particular set of attributes which determine its range, reliability, accuracy, speed
etc. and will be linked to other rules with different attributes (more accurate but
slower etc.).

Thus the performance of any one relationship can be determined using some
other relationship from the domain which is in some sense considered more reliable
or appropriate in the current situation. For example, existing analytical (deduc-
tive) models can be used to check the performance of an heuristic by inferring the
consequences of a proposed solution hypothesis. Similarly initial assessments based
on simple rules of thumb can be checked using more detailed (and more accurate)
relationships as more data becomes available. Conversely existing abductive models
(in the form of examples or case-result pairs) can be used to assess the performance
of a proposed (deductive) simulation model, by comparing the predicted result with
the previously recorded values. In general the utility or performance of a rule, and
our confidence in it (or more precisely in the results of using the rule in a particular
situation), will be a complex function of the purpose of the rule, previous experience
in the domain, the data available and the time available for its use etc.

In what follows, we will model heuristics as conditionals of the form

Al,...,An(—Bl,...,Bm

where Ai,..., A, are the condition(s) and By, ..., By, are the action(s). This ap-
proach has the advantage of preserving the monotonicity of logical inference and

22 Although we shall only consider adaption within a given domain here we have argued else-
where (Logan, 1987) that the techniques presented below are equally relevant to the production
of analogies, and that the refinement of techniques or solution strategies (what might be termed
‘between designs’ learning), also proceeds through trial and error guided by heuristics.
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allows us to work within a standard logical framework (see (Logan, 1987) for de-
tails). We will distinguish between deductive rules of the form

A(f(z1,...,2pn)) < Bi(x1), ..., Bn(zy)

and abductive rules??

A(z) < Bi(f1(2)), ..., Bn(fn(2))

according to the relations of functional dependency between the criteria (Logan,
1989).2* Rules with no function terms, e.g. A(x) + B(z), are both abductive
and deductive in the sense defined above. Note that both sets of rules can be used
abductively and deductively. Given a rule A(z) < B(f(x)) and an hypothesis
B(f(a)) we can derive A(a) as required by the definition of abduction. Rather this
distinction is more a question of how the relationships are conceptualised and how
they are typically used, rather than constituting a basic addition to the framework
outlined by March.

Typically each set of rules will only be consistent for a limited range of values,
and in general there is no guarantee that any given subset will be consistent for any
range of values. For example, the rules

A(g(x)) « B(z)

and
A(z) « B(fi(z))

may be consistent for certain sets of values m < z < n but not for others x <
m,x > n where a different rule such as A(z) < B(f:(x)) may be required to
maintain consistency. This context dependency can be expressed explicitly in the
form of ‘context switches’; literals which have to be true for the rule to be used.
For example, the rule

A(x) <« B(fi(zx)) h\e <nAz>m

will only be used if z is in the range m — n. (If there are no assertions regarding
the value of x within the the current problem model, a constraint limiting it to this
range will form part of the hypothesis).

7.3 An Example: Generating A Valid Hypothesis

The problem of, for example, generating a valid hypothesis can be reformulated
within this framework as that of finding an abductive rule which is consistent over
the range of the goal criterion relative to the subset of relevant (deductive or abduc-
tive) rules which together define the problem dependent subtheory for the domain.
For example, in attempting to achieve some criterion A(a) a designer may use a
relationship such as

A(z) < B(f(x)) (1)

23We have not adopted the conventional practice of denoting an ‘heuristic’ (in the sense of
an abductive relationship) as an inverse conditional: i.e. a relationship of the form A(z) —
Bi(fi(x)),...,Bn(fn(x)). Within a conventional first-order framework the meaning of a state-
ment such as, for example, Area(x,u) — Length(z, f(u)), Width(z, f(u)) is that if the area of z
is u then it is logically necessary that it’s length and width be f(u). This means we can’t repre-
sent alternative ways of deriving the length and width of a room unless we are willing to specify
mutually exclusive sets of situations in which they are appropriate. To do otherwise entails either
reinterpreting the semantics of the conditional or the introduction of modal operators.

24More generally rules of both types can be either heuristic (in that the results of their use
cannot be guaranteed correct in all situations) or algorithmic.
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representing a rule of thumb, previous example etc. to generate an hypothesis, or
case

B(f(a)) (2)
This is essentially the process of abduction; the reduction of a set of abstract
constraints (expressed as a series of atomic propositions) to some set of simpler
constraints by using the relationships embodied in the composite propositions as
production rules. The problem state containing the criterion A(a) is transformed
into a more detailed one containing the additional assertion B(f(a)). The resulting
expanded set of criteria, if achieved, would result in the attainment of the constraint
denoted by the higher level concept. In conceptualising the problem in terms of a re-
lationship between these two criteria the designer has already determined the overall
form of the solution.?® Any specific design solution is defined by the assignment of
a particular value to the concept B(x).

Once specified, each new partial solution is checked against the criteria or con-
straints used in generating all previous partial solutions. In particular it is checked
against the relationships forming the subtheory for the current domain. For ex-
ample, a more accurate rule with higher reliability but which is difficult to invert
can be used to determine the success of the proposed hypothesis in achieving the
desired criterion. For example, from the rule

A(g(x)) « B(x) (3)

and the hypothesis
B(f(a)) (2)
we can derive the result

A(g(f(a))) (4)

This is essentially the process of deduction. In the context of the model developed
above deductive inference can be viewed as the determination of the implications
or emergent properties of the current problem description based on the functional
dependencies between concepts. As the solution develops new higher level proposi-
tions become derivable from the statements defining the current problem. Typically
this entails the prediction of one or more of the performances or characteristics of
the design from some subset of its attributes.

In many cases the hypothesis may not achieve the required criterion value i.e.
A(a) # A(g9(f(a))) or g # f~* at a, or it may fail to achieve some one of the other
criteria such as C'(b), i.e.

B(f(a)), C(h(2)) < B(z) = C(h(f(a)))

and
C(h(f(a))) # C(b)

or both. More generally an hypothesis fails to attain the desired criterion value if
the result predicted by the deductive rule g(f(a)) is outwith the range required for
attainment of the goal i.e. g(f(a)) < a1 or g(f(a)) > as, where a; — as denotes the
range of criterion values which would result in the attainment of the goal. That is,
the values of the goal and objective together with some integrity constraint imply
an inconsistency. In formal terms we can represent this as

A(a), Alg(f(a)))
together with
—(A(z) A A(y) A Diff (z,y))

25We shall ignore the problem of finding or generating this relationship and limit our consider-
ation to the variation in the value of the criterion f(a).
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implies an inconsistency. In a sense we can regard the appropriateness of the ab-
ductive rule as inversely proportional to the ‘distance’ between the goal and the de-
ductively derived result.?6 This hypothetico-deductive cycle underlies the analysis-
through-synthesis design methodology outlined in section 3, in which solutions are
proposed to discover their implications in terms of other criteria. In a sense ab-
duction could be said to subsume deduction in that the role of deductive inference
can be seen as simply determining the implications of proposals with respect to
constraints, guiding the transition between states and ensuring their consistency.
In reality, of course, the process is rather more complicated. Whether an hy-
pothesis attains a given criterion value is intrinsically context dependent in being
at least potentially dependent on the values of all the other criteria forming the
problem model. The attainment of a goal by any given criterion value is dependent
on (amongst other things) what is possible in terms of the criterion in the current
context, the sensitivity of the criterion value to minor design changes and the im-
plications of such changes for other criteria. The designer dynamically redefines
the satisficing level for each criterion, and hence the performance level which must
be attained by any hypothesis, in response to the current problem context. Lower
criterion values may be accepted if the original goals are found to be unattainable
in the context of the current solution, or if their attainment would have unaccept-
able consequences for other criteria.?” While the simple view of deduction and goal
attainment presented above is incapable of modelling this process of dynamic goal
redefinition (and many other things), we believe it is an adequate model of a failure
to achieve a goal, and hence can give some insight into the process of rule formation.
As the design develops the designer learns more about the problem and the so-
lution as new aspects of the problem become apparent, and the conflicts inherent in
his view of the problem are revealed. The designer uses this increased understanding
to generate new structures and relationships. The rules or problem transformations
which form the basis of abduction and deduction are continually refined and mod-
ified as the design progresses. The design and its derived criteria are used to infer
new generalisations and relationships better adapted to the current problem context
(for example, by modifying the criterion values or introducing constraints requiring
that if a particular solution is to be used in the current context other design criteria
must take certain values). This integration is the step Peirce termed ‘induction’.
Thus from a case

B(f(a)) (2)
and a result

A(g(f(a))) (4)

derived within the context of the current problem we can infer a new rule, say

A(z) < B(f'(2)) (5)

which subsumes both Eqn.(2) and Eqn.(4) and hopefully is better adapted to pro-
ducing hypotheses within the range of the criterion value A(a). In general there
will be many such rules and it will be necessary to select between them on the basis
of some criterion (simplicity, plausibility etc.). However we will not consider these
problems further here. Like abduction, induction is not logically determinate. A
newly inferred relationship cannot be guaranteed to be consistent with either the
derived criteria or the set of hypotheses forming the current problem state. A de-
rived relation is said to be valid if it is consistent with the set of constraints which

26Indeed we can view the utility of a rule in attaining some goal criterion in these terms. The
function appropriateness(action, situation) becomes the inverse of the objective — the result of
taking some action in some situation expressed in terms of problem criteria rather than meta-level
properties. However we shall not pursue these ideas further here.

2"These problems are discussed in more detail in (Logan, 1987).
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constitute the current problem model, and irredundant if it allows the derivation
of new consequences and/or hypotheses. As such it subsumes both deduction and
abduction as necessary to the determination of its consistency.

The cycle then begins again. This new rule can be used to generate a new hy-
pothesis which forms the basis of a more detailed exploration of the problem, leading
to the derivation of new criterion values and the generation of further hypotheses.
Hopefully the deductive and abductive models will tend to ‘converge’ as the struc-
ture of the problem is understood. In the simple example above this happens when
some f* = g~ ! over the range of the goal criterion, i.e. g(f*(a)) = a. If no modi-
fication of Eqn.(1) leads to success then either the problem is overconstrained, (i.e.
a basic conflict exists within the criteria forming the current problem context), and
the solution must be modified or the constraints relaxed, or the original (meta)-
hypothesis of using Eqn.(1) was flawed (e.g. an inappropriate analogy), and the
(meta)-rule that lead to the generation of Eqn.(1) must be modified accordingly.
March (1976) has argued that the phases follow one another in the iterative se-
quence abduction- deduction-induction with constant refinements and redefinitions
of characteristics, design, and relations as the solution evolves. However while this is
the general direction of the argument there is no logical necessity for any particular
operation to follow any other; it is common, for example, to defer evaluation until
several decisions have been made or to consider several hypotheses simultaneously,
and in general a simple iterative process is inadequate to represent the complexity
of design.

This cycle of abduction-deduction-induction is a learning process. In this view
‘learning’ is seen as the formalisation (through induction) of the understanding of
the relationship between an action (or more generally a situation) and its conse-
quences. In design this takes the form of learning about critical relationships and
possible forms as the solution evolves. Between generic solutions planning is less a
search for the best solution than an exploration of the compromises that give suffi-
cient solutions. These explorations help the designer appreciate which requirements
may be most readily achieved. Learning more is the most important part of this
process, and redefinition of the problem and solution can only result if more knowl-
edge about them is acquired. The ‘right’ abductive relationship is one which not
only achieves the original (local) goal, but which achieves this goal in the context of
the current problem. The resulting abductive function f* represents the designer’s
understanding of the structure of the problem; it embodies the knowledge of how to
achieve the goal in the context of the problem, i.e. the modifications which must be
made to the standard solution for it to work in the context of the current problem.

8 Conclusion

In this paper we have tried to relate two of the main approaches to design found in
the design theory literature — that design is a knowledge-based process and that
design is a learning process — in an attempt to explain why design happens the way
it does. Starting with a small number of (hopefully) plausible assumptions about
the nature of design problems and the limitations of design knowledge, we have
developed a theoretical model which tries to account for some of the results from
empirical studies of the design process. In particular, we have tried to explain why
even in the case of reasonably simple problems designers find it necessary to refine
and extend their knowledge in the context of the current problem and how in doing
so they come to understand the pattern of relationships between criteria which
together define the structure of the problem. By embedding our model of design
knowledge within the framework of the three logical operators proposed by March
we have tried to show how the development of design knowledge might proceed.
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The refinement of an heuristic through a process of successive approximation can
be viewed as a very crude model of, (or perhaps a metaphor for), what happens
when a designer begins to ‘understand’ the structure of a problem, in terms of the
relationships between the problem criteria. The resulting hypothetico-deductive
process can be seen as a natural consequence of the need to refine and adapt a set
of basic or core relationships to a given problem, and forms the context of a learning
process through which designers refine their knowledge both within and between
design problems.

The use of heuristics to model design knowledge is not meant to imply any on-
tological commitment, e.g. that the rules used by designers can be made explicit
or even that such rules exist. Rather heuristics provide a useful framework for ex-
ploring certain assumptions about design knowledge; any equivalent representation
such as ‘prestructures’ or ‘prototypes’ would do equally well. Indeed, we would
argue that the analysis presented above applies to any knowledge-based view of de-
sign, irrespective of whether design knowledge is represented as heuristics, problem
transformations or prototypes. Nor do we claim that March’s abduction-deduction-
induction model of the design process has any psychological validity. Rather the
intention is to place some broad constraints on how such a process of rule formation
might work. However we would argue that even such a limited model is useful in
gaining some insight into the role of learning in design and that it can provide a
useful framework for future work.

Acknowledgements

This paper is largely based on work carried out while the author was a student at
the Department of Architecture, University of Strathclyde, and reported in (Logan,
1987), and is currently supported under SERC grant No. GR/F/6200.1. T am grate-
ful to the staff and students of the ABACUS CAAD group within the Department
of Architecture for numerous discussions during the development of these ideas. I
am also indebted to the staff and students at the AT in Design research programme
in the Department of Artificial Intelligence at the University of Edinburgh for many
helpful discussions of these ideas. Dave Corne, Tim Smithers and Nils Tomes read
an earlier version of the paper and provided many helpful comments.

References

Akin, O. (1978). “How do Architects Design’, in Artificial Intelligence and Pattern
Recognition in Computer Aided Design, J. C. Latombe, ed., North Holland,
65-98.

Bazjanac, V. (1974). “Architectural Design Theory: Models of the Design Process”
, in Basic Questions of Design Theory, W. R. Spillers, ed., North Holland,
Amsterdam, 2-19.

Davis, P. J. & Hersh, R. (1980). The Mathematical Experience, Birkhauser.
Foz, A. T. K. (1972). “Some Observations on Designer Behaviour in the Parti’; MIT
Press, MA Thesis, Cambridge, Mass.

Gero, J. S. (1987). “Prototypes: a new schema for knowledge-based design’, Archi-
tectural Computing Unit, Department of Architectural Science, University
of Sydney, Working Paper.

Gero, J. S., Maher, M. L. & Zhang, W. (1988). “Chunking structural design knowl-
edge as prototypes’, in Artificial Intelligence in Engineering: Design, J. S.
Gero, ed., Elsevier, Amsterdam, 3—21.

24



Hillier, W. & Leaman, A. (1974). “How is design possible’, Journal of Architectural
Research 3, 4-11.

Hillier, W. & Leaman, A. (1976). “Architecture as a discipline”, Journal of Archi-
tectural Researchb, 28-32.
Jones, J. C. (1970). Design Methods: Seeds of human futures, Wiley.

Krauss, R. I. & Meyer, J. R. (1970). “Design: A Case History’; in Emerging Methods
in Environmental Design and Planning, G. T. Moore, ed., The MIT Press,
11-20.

Lawson, B. (1980). How Designers Think, Architectural Press, London.

Lenat, D. B. (1979). “On Automated Scientific Theory Formation: A Case Study
Using the AM Program’, in Machine Intelligence 9, J. Hayes, D. Michie &
L. I. Mikulich, eds., Halstead, New York, 251-283.

Lenat, D. B. (1982). “The Nature of Heuristics”, Artificial Intelligence 19, 189-249.

Lenat, D. B. (1983aa). “Theory Formation by Heuristic Search’, Artificial Intelli-
gence 21, 31-59.

Lenat, D. B. (1983bb). “EURISKO: A program that learns new heuristics and do-
main concepts’, Artificial Intelligence 21, 61-98.

Logan, B. S. (1987). “The Structure of Design Problems” Department of Architec-
ture, University of Strathclyde, PhD Thesis, (unpublished).

Logan, B. S. (1989). “Conceptualizing Design Knowledge’, Design Studies 10, 188—
195.

Logan, B. S. & Smithers, T. (1989). “The Role of Prototypes in Creative Design’, in
Preprints of the International Round-Table Conference: Modelling Creativ-
ity and Knowledge Based Creative Design., Department of Architectural
and Design Science, University of Sydney, Sydney, 233-248.

March, L. (1976). “The Logic of Design and the Question of Value’, in The Archi-
tecture of Form, L. March, ed., Cambridge University Press.

Newell, A., Shaw, J. C. & Simon, H. A. (1963). “GPS, A Program that Simulates
Human Thought”, in Computers and Thought, E. A. Feigenbaum & J. Feld-
man, eds., McGraw Hill, New York, 279-296.

Oxman, R. & Gero, J. S. (1988). “Designing by prototype refinement in architec-
ture’] in Artificial Intelligence in Engineering: Design, J. S. Gero, ed., Else-
vier, Amsterdam, 395-412.

Petrie, H. G. (1979). “Metaphor and Learning’, in Metaphor and Thought, A. Ortony,
ed., Cambridge University Press, Cambridge, 438-461.

Polya, G. (1945). How to Solve It, Princeton University Press.

Pushkin, V. N., ed. (1972). Problems of Heuristics, Keter, Jerusalem.

Schon, D. A. (1988). “Designing: Rules,types and worlds’, Design Studies 9, 181-190.
Simon, H. A. (1970). The Sciences of the Artificial, MIT Press.

Simon, H. A. (1973). “The Structure of Ill Structured Problems”, Artificial Intelli-
gence 4, 181-201.

Steadman, P. (1979). “The History and Science of the Artificial”, Design Studies 1,
49-58.

25



