A* with Bounded Costs

Brian Logan and Natasha Alechina
School of Computer Science, University of Birmingham
Birmingham B15 2TT UK

{b.s.logan,n.alechina}@cs.bham.ac.uk

Abstract

A key assumption of all problem-solving approaches based
on utility theory, including heuristic search, is that we can as-
sign a utility or cost to each state. This in turn requires that
all criteria of interest can be reduced to a common ratio scale.
However, many real-world problems are difficult or impos-
sible to formulate in terms of minimising a single criterion,
and it is often more natural to express problem requirements
in terms of a set of constraints which a solution should satisfy.
In this paper, we present a generalisation of the A™ search al-
gorithm, A* with bounded costs (ABC'), which searches for
a solution which best satisfies a set of prioritised soft con-
straints, and show that, given certain reasonable assumptions
about the constraints, the algorithm is both complete and opti-
mal. We briefly describe a route planner based on ABC' and
illustrate the advantages of our approach in a simple route
planning problem.

Introduction

Heuristic search is one of the classic techniques in Al and
has been applied to a wide range of problem-solving tasks
including puzzles, two player games, and path finding prob-
lems. A key assumption of all problem-solving approaches
based on utility theory, including heuristic search, is that we
can assign a utility or cost to each state. This in turn requires
that all criteria of interest can be reduced to a common ratio
scale. For example, in a game of chess it is assumed that
all the pieces and their positions on the board can be given a
value on a common scale. Similarly, in decision theory, it is
assumed that, for example, the inconvenience of carrying an
umbrella and the discomfort of getting wet can be expressed
as commensurable (dis)utilities. However, many real-world
problems are difficult or impossible to formulate in terms of
minimising a single criterion, and it is often more natural
to view such problems in terms of a set of prioritised soft
constraints. By prioritised we mean that it is more impor-
tant to satisfy some constraints than others. For example,
while not getting wet and not carrying an umbrella is clearly
preferable, we may also prefer being dry with an umbrella
to being wet without one. Soft constraints are constraints
which can be satisfied to a greater or lesser degree, for ex-

Copyright ©1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ample how long we have to spend in the rain, or the number
of items we have to carry.

In this paper, we present a generalisation of the A* search
algorithm, A* with bounded costs (ABC), which searches
for a solution which best satisfies a set of prioritised soft
constraints, and show that, given certain reasonable assump-
tions about the constraints, the algorithm is both complete
and optimal. We briefly describe an implemented route plan-
ning system based on ABC and illustrate the advantages of
ABC compared to A* in a simple route planning problem.

The work reported in this paper was originally moti-
vated by difficulties in applying classical search techniques
to agent route planning problems, and we shall use this as
a motivating example throughout the paper. However, the
problems we identify with utility based approaches, and the
solutions we propose, are equally applicable to other search
problems.

An example: route planning

Consider, for example, the problem of an agent playing the
game of hide-and-seek which has to plan a route from its
current position to home base in a complex environment
consisting of hills, valleys, impassable areas and so on. The
plan should satisfy a number of criteria, for example, it
should be concealed from the agent’s opponents, it should
be as short as possible and be executable given the agent’s
current resources (e.g., fuel or energy).

The route planning task can be formulated as the prob-
lem of finding a minimum-cost (or low-cost) route between
two locations in a digitised map, where the cost of a route is
an indication of its quality (Campbell et al. 1995). In this
approach, planning is seen as a search problem in space of
partial plans, allowing many of the classic search algorithms
such as A* (Hart, Nilsson, & Raphael 1968) or variants such
as A” (Pearl 1982) to be applied. However, while such plan-
ners are complete and optimal (or optimal to some bound
€), it can be difficult to formulate the route planning task in
terms of minimising a single criterion.

One way of incorporating multiple criteria into the plan-
ning process is to define a cost function for each criterion
and use, e.g. a weighted sum of these functions as the func-
tion to be minimised. For example, we can define a ‘visibil-
ity cost’ for being exposed and combine this with cost func-
tions for the time and energy required to execute the plan

to form a composite function which can be used to eval-
uate alternative plans. However the relationship between
the weights and the solutions produced is complex, and it
is often not clear how the different cost functions should be
combined to give the desired behaviour across all magnitude
ranges for the costs. This makes it hard to specify what kinds
of plans a planner should produce and hard to predict what
it will do in any given situation; small changes in the weight
of one criterion can result in large changes in the resulting
plans. Changing the cost function for a particular criterion
involves changing not only the weight for that cost, but the
weights for all the other costs as well. Moreover, if different
criteria are more or less important in different situations, we
need to find sets of weights for each situation.

At best the amount of, e.g., time or energy, we are pre-
pared to sacrifice to remain hidden is context dependent.
In general, the properties which determine the quality of
a solution are incommensurable. For example, the criteria
may only be ordered on an ordinal scale, with those criteria
which determine the feasibility of a solution being preferred
to those properties that are merely desirable. It is difficult
to see how to convert such problems into a multi-criterion
optimisation problem without making ad-hoc assumptions.

State space search with prioritised soft
constraints

In the remainder of this paper we describe a new search al-
gorithm, A* with bounded costs (A BC'), which searches for
a solution which best satisfies a set of prioritised soft con-
straints (Logan 1997). In effect, we replace the optimisation
problem solved by A* with a satisficing or constraint satis-
faction problem which allows optimisation as a special case.
For example, rather than finding the least cost plan on the
basis of a weighted sum of the time required to execute the
plan and its visibility, we might specify a route that takes
time less than ¢ and is at least 50% concealed, or a route that
requires no more than e units of energy to execute and min-
imises visibility. This approach provides a means of more
clearly specifying problems and more precisely evaluating
solutions. For example, a plan can be characterised as sat-
isfying some constraints and only partially satisfying or not
satisfying others.
We define an ABC' search problem as consisting of:

e a set of states and operators as for A*;

e a set of cost functions, one for each criterion on which
solutions are to be evaluated;

e a set of constraints on acceptable values for each cost;
e a preference ordering over sets of constraint values; and
e a preference ordering over costs.

A solution to an ABC' search problem is a path from the
start state to a goal state.

Path constraints

A cost is a measure of path quality relative to some criterion,
and can be anything for which an ordering relation can be
defined: e.g., numbers, booleans, or more generally a label

from an ordered set of labels (e.g., ‘tiny’, ‘small’, ‘medium’,
‘large’, ‘huge’) etc. A cost function is a function which takes
a path and returns an estimate of the cheapest completion of
the path to a goal state. A cost function is admissible if it
never over-estimates the true cost of the cheapest completion
of a path to a goal state. A cost function is increasing (resp.
decreasing) if every operator application costs at least some
minimum positive (resp. negative) amount d.

A constraint is a relation between a cost and a set of ac-
ceptable values for the cost, for example the boolean value
‘true’, ‘= 100’, an open interval such as ‘< 10°, ‘> 20’, or
‘< O+ €’ (i.e. within € of the optimum value O).

An important class of constraints are upper/lower bound
constraints which define an upper or lower bound on some
property of the solution, such as the time required to execute
aplan, its degree of visibility etc. Another kind of constraint
which we consider in detail, since they allow us to formulate
ABC as a generalisation of A*, are optimisation constraints
which require that some property of the solution be min-
imised or maximised, or more generally should lie within €
of the minimum or maximum value (for example that a plan
should be as short as possible).

Upper bound/minimisation constraints on increasing ad-
missible cost functions and lower bound/maximisation con-
straints on decreasing admissible cost functions are termed
admissible. The latter are precise mirror images of the for-
mer, and for the ease of exposition we assume that admissi-
ble constraints bound increasing functions.

Path ordering

A path which satisfies all the constraints is termed valid. If
the problem is over-constrained, there will be no solution
which satisfies all the constraints. In such situations, it is
often possible to distinguish among the invalid solutions, as
the violation of some (sets of) constraints will be preferable
to others.

Combinations of possible constraint values define a set
of path equivalence classes, with those paths which satisfy
the same constraints falling in the same equivalence class.
We assume that there exists a preference ordering over these
equivalence classes. A path p, is preferred to a path py if
the equivalence class of p, precedes the equivalence class of
pyp in this ordering. For example we may prefer paths which
satisfy the greatest number of constraints, or paths which
satisfy constraints which determine the feasibility of the so-
lution to those which satisfy constraints defining properties
which are merely desirable. In what follows, we assume that
this ordering is at least a pointwise ordering, that is, if a path
P, satisfies the same constraints as p, plus at least one more
constraint, it is preferred to py.

We can use this ordering over equivalence classes without
having an explicit ordering over the constraints. However,
in many situations, it is often more natural to prioritise the
constraints and use this ordering to generate the ordering on
the path equivalence classes. For example, we could define a
total order over the constraints and use this to partition paths
into equivalence classes on the basis of the number of im-
portant constraints they satisfy, by comparing the value of
each constraint in order until we find a constraint which is

satisfied by only one of the paths. This is essentially lexi-
cographic ordering on fixed length boolean strings in which
true is preferred to false.!

If the problem is under-constrained, there may be many
valid solutions. In such cases, it is often possible to define
a notion of how well a path satisfies a constraint, which can
be used to order the solutions. For example, we may prefer
paths which over-satisfy the constraints, i.e., where there is
some ‘slack’ between the cost of a path and the bound on
the cost defined by a constraint. In the case of route plans,
solutions which over-satisfy time or energy constraints are
often more robust in the face of unexpected problems during
the execution of the plan.

The preference ordering on costs depends on the con-
straints associated with the costs. In general, if v; and v
are values and k1, ko constants, then v; is preferred to vs if:

Form of constraint on cost v Cost ordering

v< 0, +c€ v < Vs
v < ky U1 < Vg
v >k V1 > V2
v==FkK |k1—1)1| < |k2—1)2|

Combined orderings on cost values define a pointwise or-
dering over costs, i.c., a path p, is preferred to a path py if
it has the same or ‘better’ values on all cost functions. A
special case of the pointwise ordering is a dominance order-
ing. One path p, dominates another path p if both paths
terminate in the same state, and there is at least one cost f;
such that f;(p,) < fi(ps) and there is no cost f; such that
fi(0a) > fi(pv).

Many refinements of the pointwise ordering of costs are
possible. For example, we could order the equivalence
classes using the costs for the most important constraint or
the cost for the most important violated constraint. If the
constraints are ordered lexicographically, it is often more
natural to use a lexicographic ordering over the costs which
reflects the constraint ordering. We will refer to all such re-
finements as slack orderings.

The slack ordering allows us to sub-order paths within
a path equivalence class, with those paths which have the
greatest slack being the most preferred. Conversely, for vi-
olated constraints, the sub-ordering may favour paths which
are closer to satisfying the constraint. This can be useful
in the case of ‘soft’ constraints, where minor violations are
acceptable.

Slack ordering also allows us to define relative optimisa-
tion constraints, which are requirements that some cost f be
minimised or maximised, given that some more important
constraints are satisfied. A relative minimisation constraint
has the form f < oo and is assumed to be always satisfied,
but the slack ordering associated with the constraint prefers
the paths with the minimal cost on f within every equiva-
lence class.

The constraint and slack orderings over paths are used to

'Tt is clear that, in the general case, this ordering cannot be
produced using a weighted sum cost function.

direct the search and control backtracking.? The dominance
ordering is used to decide which newly generated paths to
keep and which to discard.

A* with bounded costs

The search strategy of ABC is similar to A*. We use two
lists, an OPEN list of unexpanded nodes (paths) ordered us-
ing the preference ordering, and a CLOSED list containing all
non-dominated expanded nodes. At each step, we take the
first node from the OPEN list and put it on CLOSED. Call this
node n. If n is a valid solution and all the constraints are ad-
missible we return the path and stop. Otherwise we generate
all the successors of n, and for each successor we cost it and
determine its equivalence class. We remove from OPEN and
CLOSED all paths dominated by any of the successors of n
and discard any successor which is dominated by any path
on OPEN or CLOSED. We add any remaining successors to
OPEN, in order, and recurse (see Figure 1).

If the constraints are admissible, the first solution found
will satisfy the greatest number of more important con-
straints; if slack ordering is used, this solution is also the
most preferred with respect to the slack ordering. If the con-
straints are not admissible, we can never be sure we have
found the optimum solution without an exhaustive search:
even if we have a solution which satisfies all the constraints,
there may be another solution which is preferable with re-
spect to the slack ordering.

OPEN < [start]
CLOSED < []

repeat
if oPEN is empty return false

remove n, the least member of the first
non-empty equivalence class, from OPEN
and place it on CLOSED

if n is a solution then return n
otherwise for every successor, n’, of n

cost n’ and determine its equivalence
class

remove from orPEN and cLoSED all paths
dominated by n'

if n/ is dominated by any path on oPEN
or cLosED, discard n/

otherwise add n’ to orEN, in order

Figure 1: The ABC algorithm

Favouring paths which over-satisfy the constraints has the ad-
ditional advantage of reducing the likelihood that the path will vi-
olate the constraint as the length of the path increases, reducing
the amount of backtracking. (If the cost functions are admissible,
the estimated cost of a path will typically increase as the path is
expanded.)

We end this section by stating two theorems about the for-
mal properties of ABC, the proofs of which we omit due to
lack of space.

Given reasonable assumptions about the constraints, it can
be shown that ABC' is both complete and optimal. By com-
plete we mean that if a solution exists, it will be found after
a finite number of steps. By an optimal solution we mean a
solution in the highest non-empty equivalence class with re-
spect to the constraint ordering which is also most preferred
with respect to the slack ordering. An algorithm is optimal if
it returns an optimal solution. Note that there may be several
different optimal solutions.

Theorem 1 ABC with admissible constraints is complete.
Theorem 2 ABC with admissible constraints is optimal.

Proofs of these theorems can be found in (Logan & Alechina
1998)

Comparison of ABC and A*

ABC is a strict generalisation of A*: with a single admissi-
ble optimisation constraint its behaviour is identical to A*.
Indeed, ABC' can be seen as A* with two partial orderings
on paths: a dominance ordering to determine which paths to
discard and a preference ordering to determine which paths
to expand first.

As might be expected, the additional flexibility of ABC'
involves a certain overhead compared with A*. The pref-
erence ordering of paths requires the comparison of & con-
straint values for each pair of paths, where £ is the number of
constraints. If slack ordering is used, we must also perform
an additional log m comparisons of k cost values, where m
is the number of paths in the equivalence class. In addi-
tion, we must update the constraint values of the paths in the
OPEN list when we obtain a better estimate of the optimum
value for an optimisation constraint.

There is also a storage overhead associated with this ap-
proach. For each path we must now hold k constraint val-
ues in addition to the k& costs from which the constraint val-
ues are derived. More importantly, we must remember all
the non-dominated paths to each state visited by the algo-
rithm rather than just the minimum cost path as with A*
since: (a) it may be necessary to ‘trade off” slack on a more
important constraint to satisfy another, less important con-
straint; and (b) it may not be possible to satisfy all the con-
straints, in which case we must backtrack to a path in a lower
equivalence class. In some cases remembering all the non-
dominated paths can be a significant overhead. However,
there are a number of ways round this problem, including
more intelligent initial processing of the constraints and dis-
cretising the Pareto surface. For example we can require that
the algorithm retain no more than [paths to any given state,
by discarding any path which is sufficiently similar to an ex-
isting path to that state. In the limit, this reduces to A* where
we only remember one path to each state.

Route planning with prioritised soft
constraints

In this section, we present an example application of the
ABC algorithm and compare it to conventional approaches
based on weighted sum cost functions. We describe a sim-
ple route planner based on ABC' for an agent which plays
the game of ‘hide-and-seek’ in complex environments. The
goal of the agent is to get from the start point to home base
subject to a number of constraints, e.g., that the route should
take less than ¢ timesteps to execute or that the route should
be hidden from the agent’s opponents, and the function of
the planner is to return a plan which best satisfies these con-
straints.

The current implementation of the route planner supports
seven constraint types which bound the time and effort taken
to execute the plan or require that certain cells be visited or
avoided (for example concealed route constraints enforce a
requirement that none of the steps in the plan be visible by
the agent’s opponents).> However, for reasons of brevity, we
shall consider only time and energy constraints here. Time
constraints establish an upper bound on the time required to
execute the plan assuming the agent is moving at a constant
speed of one cell per timestep. Energy constraints bound a
non-linear ‘effort’ function which returns a value expressing
the ease with which the plan could be executed —the cost
function is based on the 3D distance travelled with an addi-
tional non-linear penalty for going uphill.

In the following example, we consider the problem of
planning from coordinates (50, 10) to (10, 45) in an 80 x 80
grid of spot heights representing a 10km x 10km region of
Southern California. The terrain model is shown in Figure 2
(lighter shades of grey represent higher elevations).* We use
a lexicographic ordering over constraints and costs, with the
time constraint being more important than the energy con-
straint. The time taken to execute the plan should be less
than 100 timesteps (¢ < 100) and the energy cost should
be less than 15,000 units (¢ < 15,000). There is a conflict
between the two constraints, in that shorter plans involve
traversing steeper gradients and so require more energy to
execute.

Figure 2 shows the plan returned by the ABC' planner.
The plan requires 63 timesteps and 14,736 units of energy
to execute, i.e. it just satisfies the energy constraint. A
straight line path would have given maximum slack on the
first (time) constraint, but the planner has traded slack on the
more important constraint to satisfy the second, less impor-
tant, constraint (energy). In fact this plan has the greatest
slack on the time constraint while still satisfying the en-
ergy constraint. Finding the plan requires the generation
29,107 nodes and 9,195 insertions into the OPEN list, and
takes about about 40 seconds of CPU time on a Sun Ul-
traSparc (300 MHz). As a rough comparison, with only
the energy constraint (i.e., equivalent to A* with energy as
the cost function), the planner requires about 2.5 seconds of

3Note that the current implementation of the planner does not
support optimisation constraints.

*We are grateful to Jeremy Baxter at DERA Malvern for pro-
viding the terrain model.

CPU time to find a plan, generates 6,110 nodes and performs
2,363 insertions into the OPEN list.

Figure 2: Planning with two constraints.

Unfortunately, it is not possible to compare the perfor-
mance of ABC with A* in other than trivial cases, e.g.,
when there is a single optimisation constraint, because we
can’t reduce the dominance and preference orderings used
by ABC to the single ordering required by A*. If, for ex-
ample, we attempted to solve the above problem with A*
using a weighted sum cost function of the form w;t + w-e,
we must ensure that the ratio of w; to ws is greater than the
maximal value of

le(pa) — e(p)l
|t(Pa) — t(pp)]

for any two plans p, and p;. But then a planner minimising
w1t + wae will never trade off slack on the first constraint
to satisfy the second one. The following example illustrates
this point, and also explains why ABC must remember all
non-dominated paths to each visited state.

Suppose that there are two plans, p, and p; to a point
n, both satisfying the time and energy constraints, that is,
t(pa) <T,e(ps) < E,andt(py) < T,e(pp) < E,where T
and E are upper bounds on time and energy respectively.
Suppose further that t(p,) < t(pp) and e(py) > e(ps).
Given that

w _ e(pa) — e(py)
w2 t(pb) - t(pa) ’

we have

w1t(pa) + w2e(pa) < wit(ps) + wae(ps),

that is, p, is cheaper than p.

However if it subsequently turns out that no completion
of p, through n will satisfy the energy constraint but there
exists a completion of p; which satisfies both constraints, we
cannot backtrack to p; since A* retains only the (estimated)
cheapest solution through n. A* collapses both costs into

a single value which is used to determine both the prefer-
ence ordering and whether one plan dominates another. The
resulting loss of completeness means we cannot use A* to
trade one constraint off against another (Logan 1997).

Another possible way of solving the example problem us-
ing A* would be to use a partial order on the set of plans.
Suppose we have some partial order on plans, which is at
least the dominance ordering. Given two plans to the same
point, p, and p; such that p, satisfies the time and energy
constraints, and pj takes less time to execute but violates the
energy constraint, then if p, and p; are comparable in this
ordering, then p, is preferred to p,. If A* uses this order-
ing to decide which plans to discard, then only p, will be
retained. However, if all extensions of p, violate the first
constraint, while there exists an extension of p; which satis-
fies it, then the optimal solution will never be found. Con-
versely if A* uses only the dominance ordering then the first
solution found may not be optimal.

Related work

Our work has similarities with work in both optimisation
(e.g., heuristic search for path finding problems and decision
theoretic approaches to planning) and constraint satisfaction
(e.g., planning as satisfiability). ABC' is a strict generali-
sation of A*: with a single optimisation constraint its be-
haviour is identical to A*. However unlike heuristic search
and decision theoretic approaches, we do not require that
all the criteria be commensurable. The emphasis on non-
dominated solutions has some similarities with Pareto opti-
misation which also avoids the problem of devising an ap-
propriate set of weights for a composite cost function. How-
ever the motivation is different: the aim of Pareto optimi-
sation is to return some or all of the non-dominated solu-
tions for further consideration by a human decision maker.
In contrast, when slack ordering is used, ABC will return
the most preferred solution from the region of the Pareto
surface bounded by the the constraints which are satisfied in
the highest equivalence class. If an optimal solution is not
required (i.e., a slack ordering is not used), the algorithm
will return any solution which satisfies the constraints; such
a solution will not necessarily be Pareto optimal.

ABC' also has a number of features in common with
boolean constraint satisfaction techniques. However, algo-
rithms for boolean CSPs assume that: (a) all constraints
are either true or false, (b) all constraints are equally im-
portant (i.e., the solution to an over-constrained CSP is not
defined), and (c) the number of variables is known in ad-
vance. Considerable work has been done on partial con-
straint satisfaction problems (PCSP), e.g., (Freuder & Wal-
lace 1992), where the aim is to find a solution satisfying the
greatest number of most important constraints. Dubois et
al. (Dubois, Fargier, & Prade 1996) introduce Fuzzy Con-
straint Satisfaction Problems (FCSP), a generalisation of
boolean CSPs, which support prioritisation of constraints
and preference among feasible solutions. In addition, FC-
SPs allow uncertainty in parameter values and ill-defined
CSPs where the set of constraints which define the problem
is not precisely known. However, in common with more
conventional techniques, both PCSP and FCSP assume that

the number of variables is known in advance. In many cases
this assumption is violated, for example, in route planning
the number of steps in the plan is not normally known in ad-
vance. Several authors, for example (Kautz & Selman 1996;
Liatsos & Richards 1997), have described iterative tech-
niques which can be applied when the number of variables is
unknown. However, to date, these techniques have been ap-
plied to problems which are considerably smaller than the
route planning problems we consider, which typically in-
volve more than 100,000 states and plans of more than 500
steps. Moreover these techniques are incapable of handling
prioritised or soft constraints.

Like A*, ABC requires monotonic cost functions and
good heuristics. However it has many of the advantages
of PCSP/FCSPs and iterative techniques: it can handle pri-
oritised and soft constraints (though not uncertain values or
cases in which the set of constraints which define the prob-
lem is not precisely known) and problems where the number
of variables is not known in advance.

Conclusions and further work

In this paper, we have presented a new approach to formu-
lating and solving multi-criterion search problems with in-
commensurable criteria.

We have argued that it is often difficult or impossible to
formulate many real world problems in terms of minimis-
ing a single weighted sum cost function. By using an or-
dered set of prioritised soft constraints to represent the re-
quirements on the solution we avoid the difficulties of for-
mulating an appropriate set of weights for a composite cost
function. Constraints provide a means of more clearly spec-
ifying problem-solving tasks and more precisely evaluating
the resulting solutions: a solution can be characterised as
satisfying some constraints (to a greater or lesser degree)
and only partially satisfying or not satisfying others.

We have described a new search algorithm, A* with
bounded costs, which searches for a solution which best sat-
isfies a set of prioritised soft constraints, and shown that for
an important class of constraints the algorithm is complete
and optimal. The utility of our approach and the feasibil-
ity of the ABC algorithm has been illustrated by an imple-
mented route planner which is capable of planning routes in
complex terrains satisfying a variety of constraints.

The present work is the first step in the development of a
hybrid approach to search with prioritised soft constraints. It
raises many new issues related to preference orderings over
solutions (‘slack ordering’) and the relevance of different
constraint orderings for different kinds of problems. More
work is also necessary to characterise the performance im-
plications of ABC relative to A*. However, we believe that
the increase in flexibility of our approach outweighs the in-
crease in computational cost associated with ABC.

Acknowledgements

We wish to thank Aaron Sloman and the members of the
Cognition and Affect and EEBIC (Evolutionary and Emer-
gent Behaviour Intelligence and Computation) groups at the
School of Computer Science, University of Birmingham for

useful discussions and comments. This research is partially
supported by a grant from the Defence Evaluation and Re-
search Agency (DERA Malvern).

References

Campbell, C.; Hull, R.; Root, E.; and Jackson, L. 1995.
Route planning in CCTT. In Proceedings of the Fifth Con-
ference on Computer Generated Forces and Behavioural
Representation, 233-244. Institute for Simulation and
Training.

Dubois, D.; Fargier, H.; and Prade, H. 1996. Possibility
theory in constraint satisfaction problems: Handling prior-
ity, preference and uncertainty. Applied Intelligence 6:287—
309.

Freuder, E. C., and Wallace, R. J. 1992. Partial constraint
satisfaction. Artificial Intelligence 58:21-70.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100-107.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence, AAAI-96,1194—1201. AAAI Press/MIT
Press.

Liatsos, V., and Richards, B. 1997. Least commitment—
an optimal planning strategy. In Proceedings of the 16th
Workshop of the UK Planning and Scheduling Special In-
terest Group, 119-133. University of Durham.

Logan, B., and Alechina, N. 1998. A* with bounded costs.
Technical Report CSRP-98-09, School of Computer Sci-
ence, University of Birmingham.

Logan, B. 1997. Route planning with ordered constraints.
In Proceedings of the 16th Workshop of the UK Planning
and Scheduling Special Interest Group, 133—144. Univer-
sity of Durham.

Pearl, J. 1982. A¥ — an algorithm using search effort
estimates. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 4(4):392-399.

