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Abstract

This paper describes the development and computational testing of a model of the information inter-
mediary based on an Al theory of belief revision. We describe the theoretical foundations of the work
in a general account of the way an agent’s beliefs and intentions are formed and modified, and in an
analysis of the functional tasks an intermediary has to carry out; we indicate the specific developments
required to automate and integrate both aspects of intermediary behaviour, as determinants of inter-
active dialogue with the user; and report, with illustrations, on tests and findings. The research shows
that such approaches can be implemented in an essentially principled manner, though there are many
large problems still to be overcome, and our experiments are only the first, extremely simple, trials of
the basic strategy for intermediary simulation.

1 Introduction

We have sought to model the information intermediary by combining a general theory of belief revision,
due to Galliers, with the functional characterisation of the intermediary proposed by Belkin and his
colleagues. We have developed and tested a computational implementation showing that our model
supports simple information-seeking dialogue with the adaptive and cooperative properties of real ones.
Our experiments validate some, though not all, of the major claims of the belief revision theory; they
also suggest that while Belkin at al’s functional account of the intermediary’s skills is rational, modelling
the intermediary as a collection of independent agents is not. Galliers’ theory underpins communication
between agents, but effective communication between user and librarian requires dialogue control that
an unconstrained distributed agent architecture does not provide. This paper describes our development
and implementation of the two theories as a single integrated system, and presents illustrative results.
These lay foundations for further research, though a great deal more work is needed before such a
sophisticated approach to interaction between user and intermediary could be expected to issue in any
practical interface. A full account of this work is given in [1].

2 Background

We described the motivation for our work, and both Galliers’ and Belkin et al’s theories from this point
of view, in some detail in [2]. Galliers’ theory itself is presented in [3] and the MONSTRAT model work
by Belkin, Brooks, Daniels and others in [4], [5], [6], [7] and [8] (hereafter collectively called BBD).

As an illustrative starting point here, our aim is to model the librarian’s capacities in such a dialogue
as:
I am looking for books on Classical architecture.
Are you more interested in Greek or Roman architecture?
No, like the British Museum.
Ah, you mean Classical Revival architecture.

Cfara

The key features of Galliers’ theory are that agents are autonomous but also knowledge and resource
limited, so cooperative interaction with other agents, notably by dialogue communication, is required
to reach an agent’s goals. Formulating and achieving goals, as in literature seeking, is based on belief
revision: thus formulating an adequate statement of information need and a corresponding retrieval
strategy involves communication, driven by current intentions and plans, aimed at resolving conflicts of
belief due to inadequate knowledge and obtaining a solid base for action. Belief revision is determined
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by how ground assumptions are endorsed, derived beliefs are connected, and change is minimised. In the
revision process a new belief is evaluated in terms of preferences among the alternative consistent sets
of beliefs that adopting or rejecting the candidate belief imply. In general agents are evaluating many
competing belief sets in order to establish which one(s) are superior in terms of stronger endorsement,
greater connectivity (proofs), and minimal change.

BBD’s intermediary /librarian model, based on a detailed study of real interviews, treats the interme-
diary as a collection of specialised functional experts, agents engaged with subtasks of the overall task of
satisfying the user’s information need. These experts include ‘Problem Description’, ‘User Model’, ‘Re-
trieval Strategy’ etc, each operating as an autonomous agent requesting and passing information among
themselves and also communicating with the user. BBD noted that in the real dialogues there was no
overall protocol, but that different segments, or ‘foci’, in the dialogues concentrated on a specific expert
agent’s goals within a flexible and varied flow visiting and revisiting subtasks. They thus viewed the
intermediary as a distributed system, and initially advocated an open, blackboard architecture.

It appeared that these two theories could be very effectively combined to obtain the required full
intermediary model, since Galliers’ belief revision theory seemed to provide the mechanism for driving
both the individual functional experts and their joint ‘collective’ operating as a single agent vis-a-vis the
user.

2.1 Required Developments

While Galliers’ and BBD’s theories appeared to fit well together, applying them together required not
only computational implementation, but significant development of both in order to supply missing pieces
and ensure effective integration. It was necessary to extend Galliers’ account of operations on beliefs to
treat intentions and planning, and to provide for inference, in order both to get the inputs required to
choose which beliefs and intentions to adopt and to pursue these through action. The computational
modelling itself called for a specific mechanism to manage the data and processes of revision.

It was necessary to supplement BBD’s account of the intermediary, on the other hand, with some
means of sustaining and organising dialogue with more power than the BBD ‘Response Generator’ and
‘Explanation’ modules. Though Belkin and his colleagues (cf [4]) report experiments with the internal
architecture of the intermediary, they did not address the question of dialogue management. However it
is clearly necessary to decide when to ask the user for information, and maintaining effective interaction
with the user implies that dialogue content has to be ordered and grouped: system outputs cannot simply
be triggered, as separate items, by independent internal prompts. Moreover, as discussed in [2], BBD’s
model needed development to integrate dialogue management and overall control and to substantiate the
metafunctions ‘Plan’ and ‘Match’ BBD do not analyse. Though Ingwersen in [9] has proposed a much
more elaborate model, essentially subsuming BBD’s, he has not tackled these issues either.

3 Implementation of Belief Revision

In Galliers’ theory ground assumptions (relative to a context) are endorsed as communicated, given (‘in-
nate’), or hypothetical. Belief communication may be first-hand or second-hand, positive or negative, so
e.g. a strongly communicated belief from a highly reliable source may be endorsed 2¢-pos. The options
for given are either specific (spec) or default (def) generalisation. Any beliefs not otherwise endorsed
are hypothetical (hypoth). Thus beliefs (which may themselves be propositions or their negations) can
be ordered by the difficulty of disbelieving them, from those endorsed 1c¢-pos down to hypoth. Beliefs
are related to other beliefs, forming internally consistent sets, so one set may be more strongly endorsed
than another. Sets may also be more or less strongly connected, or internally dense: thus individual
beliefs, especially core beliefs independently defined as important in some context, may have more or
less derivational (proof) support in different belief sets. So if an agent is entertaining a candidate belief,
adopting or rejecting it (i.e. adopting its negation) involves examining all the different maximally con-
sistent belief sets containing either it or its negation, and preferring those that are better endorsed and
more connected (me). In addition, since the whole approach is a conservative one based on the principle
that agents are reluctant to change their beliefs without good reason, if other things are equal sets that
make minimal change over the previous state are preferred. These types of reason for preferring belief
sets are considered in order, first by connectivity, then endorsement, then minimal change: however any
may determine the final outcome. This will normally be a set of equally preferred belief sets requiring
further resolution through the acquisition of new information.

Intentions depend on beliefs, and revising beliefs entails revising intentions. We have therefore incor-
porated intentions into an extended account of cognitive attitudes: cognitive states are combinations of
propositional attitudes, with derivational links between beliefs, intentions, and predicted future states.
The general process of belief revision applied to all attitudes then handles intention revision either di-
rectly in the face of conflict with communicated intentions or indirectly as a result of conflicts between



motivating beliefs. Connectivity applies to intentions in a straightforward way. Commitment, the key
feature of intention, is captured in part by the strength of endorsements on supporting beliefs, and in part
by characterising intentions directly according to the utility of their goal states and the effort required
to reach these. Thus goal states are either desire-pos or desire-neg and either effort-pos or effort-neg (on
simple heuristic definitions). The difference between beliefs and intentions is that the strengths of beliefs
depend on their sources, the commitment to intentions on their (expected) outcomes. Then in choosing
between competing sets of attitudes involving both beliefs and intentions, these are rated first by the
belief preference criteria and then the intention ones.!

It is further necessary to provide for inference and planning. This is straightforward. Normal inference
mechanisms (e.g. modus ponens) add derived beliefs or intentions to existing attitude sets, resulting in
either conflict or additional support for existing attitudes and therefore provoking revision. Planning is
also handled by inference, applying intention generation rules along with planning operators to existing
attitudes. There is thus a basic agent action cycle: incorporating new information in existing attitude
sets, firing deductive inference rules over existing attitudes to obtain new ones, performing revision to
obtain preferred sets, and executing preferred intended actions. This is the way an agent responds to
communicated input in a dialogue, modifying its attitudes and itself taking communicative action.

3.1 Computational Apparatus

The computational implementation requires an apparatus for constructing and evaluating all the attitude
sets constituting responses to input. Our approach, the ‘Increased Coherence Model’ (ICM) is based on
de Kleer’s ATMS [10, 11]: for a full account see [1]. An agent has a message interception unit (MIU) for
storing incoming and outgoing messages and a cognitive unit (CU) reading from and writing to the MIU
board. The CU has a database, an attitude revision (i.e. ATMS-based) component, an inference engine,
and a planner: the engine contains axiomatic rules operating on the information in the database which
consists of derived attitudes and their supports; the revision component does belief and intention revision
given the available justifications, taking the attitudes as ATMS assumptions; the planner constructs and
assesses plans, working on intentions derived from beliefs and resulting in actions. As an agent’s cognitive
state covers believed, intended, or uncertain attitudes, and the agent’s commitments to its attitudes, the
engine and planner use this information to guide their choice of inferences and plans, and the ATMS to
maintain consistent sets of attitudes.

Notationally, we refer to an agent’s attitude to a proposition or state of affairs, the time of holding the
attitude and the endorsement of or commitment to it (for convenience we may refer to individual attitudes
as possible attitudes). For convenience we refer to commitments to beliefs, i.e. to the strength with which
we hold them, as well as to commitments to intentions: commitments to beliefs are heuristically computed
from their endorsements and may be strong, weak or uncertain. Then if an agent’s belief state is its set of
preferred belief sets, a given proposition can figure in these in various ways reflecting the agent’s degree
of commitment to it. As noted, intentions are based on beliefs but are explicitly marked, and there are
intention sets analogous to belief sets. Belief and intention are linked by rules to the effect that an agent
cannot intend a state it believes true. Overall, revision results in consistent sets of interdependent beliefs
and intentions characterised by the agent’s commitments to these attitudes. We say an agent believes a
belief or intends an intention if these attitudes occur in every preferred set, i.e. are pervasive; attitudes
in some sets only are uncertain.

Internally, commitments are handled as a form of endorsement: the various types of commitments are
included in the endorsement orderings for beliefs and intentions respectively, and can therefore be used in
preference evaluation to determine, as a consequence of revision, what the agent’s new commitments to
its attitudes are. Individual attitudes can be multiply endorsed, and may also be definite, i.e. ascribed to
another agent and treated as premises. An agent’s database thus consists of all the agent’s attitudes, their
endorsements (including commitments), and their justifications, i.e. inference supports. In processing
via the ATMS, preferences between sets in terms of their attitude endorsements are computed by the
procedure described in [1]: as endorsements are not propagated through to derived attitudes, the effect of
the algorithm is to test whether attitudes should be retained or adopted by seeing if they remain viable
when their weakest ground assumption is removed. Evaluating attitude sets for connectivity (for core
attitudes) is easily done via the ATMS: this records minimal proofs via justification chains and these
can be checked to see whether one set includes all the proofs in another set plus additional ones, and so
should be preferred. Finally, the ATMS can be used to evaluate for minimal change by checking to see
which sets preserve most of their previous pervasive beliefs.

Inference rules are applied to obtain new justifications for attitudes. These are general rules, with
endorsements, that are not part of the database. However when they are instantiated via the rule binding
algorithm they become specific attitudes providing justifications in the database and therefore subject
to defeasible inference. Given the many possible inferences that can be drawn relating to new attitude,

INote that previous states may emerge as still preferred.



e.g. a communicated belief, we constrain inference by concentrating on the current task, as defined by
recency and modelled by a stack: thus inference is applied to attitude sets from the top of the stack. The
inference algorithm (described in [1]) exploits relevance relations between attitudes, where commitment
to one attitude depends on that to another.

As mentioned earlier, for action (as in dialogue) to satisfy intentions, planning is needed. This is done
in STRIPS style, implemented via rules applied through the inference engine and exploiting the belief
revision mechanism to choose preferred plans. The rules include desire rules determining the leading
intention and utility of a plan, and planning rules to decompose intentions: the planning rules in turn
operate on action schemata embodying primitive agent actions, which may be ‘internal’ (e.g. perform an
inference) or ‘external’ (e.g. send a message to the MIU for communication to another agent).

Computationally therefore, the agent’s cognitive architecture is operationalised with the ATMS, work-
ing on the database, supporting the belief revision mechanism, which plays a central role: it supplies
attitude information to, or receives it from, the inference engine, and it supports planning both via in-
ference in plan formation and through plan assessment. Agent processing in an action cycle is provoked
by MIU messages stimulating possible beliefs.

For example, in the dialogue fragment presented in the previous section, it turns out U is mistaken
about the meaning of the term ‘Classical architecture’. This involves two changes of belief: L revises her
original assumption about the period U is interested in; and U revises his belief about the meaning of
the term ‘Classical’. U’s initial belief sets contain the pervasive belief

(bel U (problem-desc classical-architecture) strong)
i.e. U is strongly committed to the belief that classical-architecture is a suitable problem descriptor, and
the intention

(p-int U (bel L (problem-desc classical-architecture))desire-pos)
i.e. U intends to share his problem description with L. U generates a plan to achieve this intention, which
results in his first utterance. U’s utterance causes L to revise her beliefs to include the fact that the topic
of U’s query is ‘Classical architecture’. Immediately after U’s utterance, L believes

(p-bel L (bel U (problem-desc classical-architecture)) 2¢c-pos)
and, following inference and belief revision, L adopts U’s belief as her own:

(bel L (problem-desc classical-architecture) strong).
LL does this because she has no reason to believe that ‘Classical architecture’ is not a good description of
U’s problem (e.g. U has not previously stated he is writing an essay on fish farming). L constructs a plan
from this new belief to determine whether U is more interested in Greek or in Roman architecture (perhaps
because L infers that the problem description ‘Classical architecture’ is too general). However U’s response
to L’s question leads L to realise that there has been a misunderstanding and that the appropriate problem
description is ‘Classical Revival architecture’, not ‘Classical architecture’. L therefore abandons her plan
to determine if U is more interested in Greek or in Roman architecture.

4 Implementing the BBD Model

As mentioned earlier, implementing the BBD model required a decision about the specific architecture to
be used, provision of a dialogue management capability, and a supply of actual IR task knowledge (data
and rules). The version of the BBD model we have used for reference is that given in [7]

The architecture design problems of distributed systems are well known, particularly the challenges
presented by a full-blown open-access blackboard approach with multiple agents interacting under an
uncontrolled, ‘evolutionary’ regime. As noted in [12], this view of the intermediary, as originally suggested
by BBD, presents great difficulties in the face of unpredictable inputs from arbitrary agent sources, only
very general prior definitions of task and task satisfaction, and the need for communicatively effective (i.e.
coherent) dialogue with the user. In these circumstances viable system operation calls for a controller
with so much knowledge and power that it actually subsumes the individual expert agents.

The comparative experiments reported in [5] simulating various architectures indeed showed that
some degree of control was necessary, though they concluded that a blackboard architecture was still
preferable to an actor one. The various implementations of expert intermediaries done by [13], [14] and
[15] have all been of a quite strongly controlled kind, with experts distinctly subordinate to a controller
rather than working as a collective of equals.

We carried out our own comparative simulations with alternative blackboard and actor architectures
[16]; these showed somewhat better performance for actors, but again emphasised the need for control.
But more importantly, when we came to implement dialogue management in detail, which neither BBD
nor any of the other systems mentioned had significantly addressed, we found it too difficult, at least for
our ‘Mark 1’ system, to work with a set of functional expert agents. We therefore not merely abandoned
the original blackboard proposal, but the idea of a multi-agent implementation for the intermediary. We
adopted a much more conventional approach with a single control module and the functional expert



agents replaced by distinct specialised rule sets. The BBD model had some ten functional experts, which
could be grouped as central and support processors, the former including e.g. Problem Description and
Retrieval Strategy, the latter e.g. Input Analysis; but the nature and relations of the support processors
are not well-developed in BBD’s account. We wanted to concentrate on belief revision, and not to engage
with language processing per se. Our Mark 1 architecture therefore had a controlling Dialogue module
managing both interaction with the user and the other specialised retrieval task modules, which was
thus the locus of the intermediary agent’s belief revision. The system does not do any actual natural
language processing: the (notional) input/output interface receives and sends communications in a simple
propositional language with speech act operators, which we assume current NLP interpretation and
generation could handle; we also assume that communication at the strictly linguistic level is transparent,
i.e. that librarian and user agents correctly ‘hear’ and ‘parse’ messages they receive.

4.1 Dialogue Modelling

We have had to develop and implement a specific model of dialogue pragmatics suited both to the way
agents are motivated by belief and to the nature of information-seeking dialogues as illustrated by BBD,
and hence designed both to achieve dialogue goals and to maintain proper dialogue flow. We have drawn,
as obviously appropriate, on the theory of speech acts, where communication depends both on an agent’s
own beliefs about the world and on its beliefs about its interlocutor(s), and is strategically motivated
to reach end states that the dialogue participants have cooperated to define and attain. Within this
framework each individual dialogue contribution is motivated by a desire to change participants’ cognitive
states, i.e. beliefs and intentions; but it is also, to ensure effective communication, constrained by the
need to maintain dialogue coherence which relies on the use of recognised structures for interaction, like
question-answer, as well as topic continuity.

The primitive speech acts we use are conventional in their general style, but have been defined to
reflect our need to capture the actual conditions of dialogue participation (where little can be assumed)
rather than advance planning (as in [17]). We have three speech acts, tell, ask and answer, with specific
preconditions and effects expressed primarily in terms of the agent’s beliefs about its own and its inter-
locutor’s states. For simplicity, the propositional language used to communicate is that also used for the
internal representation of attitudes; however, reflecting the real case, it does not follow that the internal
‘meanings’ of linguistic terms are the same for all participants: e.g. what the predicate ‘classical’ denotes
in the architectural domain. Communication includes an indication of the speaker’s commitment to the
attitude being communicated, which may be strong or weak.?

In our implementation successful communication is guaranteed at the basic level, i.e. where the
hearer recognises the speaker wishes the hearer to have a belief (though the speaker may not themselves
hold it). However at the higher level speech acts may be successful or not for various reasons. An
act succeeds if the hearer not merely recognises but adopts the speaker’s intention, i.e. if the speaker’s
intention for the hearer is satisfied, and fails otherwise. However these outcomes have to be specifically
characterised in belief revision terms. Thus success implies that all of preconditions, communication,
and effects must be achieved. Failure may occur e.g. when the hearer does not believe what the speaker
supposes the hearer believes; it may be from speaker’s or hearer’s point of view, and may be ‘obvious’ or
involve misunderstanding. By extension, a communicative plan will be successful if each speech act step
succeeds.

To maintain dialogue coherence (or d-coherence to distinguish it from coherence of belief), we have
found it sufficient to work with simple conventions in the spirit of dialogue games [18], which both
participants know. Thus if each takes turns, there are legal responses to each of the three possible
outcomes for each speech act. The responses are of continuation type or repair type, with the former
depending on context and the latter on perceived failure. Thus we have a transition table, so e.g. a tell
may be continued by a tell or ask or repaired by a tell or ask, while ask is continued only by answer and
repaired only by tell. This table ensures d-coherence (at least over relatively short segments), and also
naturally supplies segmentation analogous to the ‘foci’ of BBD’s dialogue analysis, in a simple model of
task-oriented dialogue structure. Specifically, continuation must lead to segmentation, which may or may
not be on the same subject, while repair may lead to a new segment, but must be on the same subject;
thus segmentation occurs when agents disagree or the dialogue subject changes.

The foregoing provide the basic dialogue apparatus. Dialogue is driven by the action schemata an
agent has for planning, in this case for planning dialogue communication, supported by its desire and
planning rules and also by specific dialogue rules. The desire rules, triggered by attitude conflict, provoke
planning to resolve the conflict, say by one agent giving the other a justification for its belief. We have
three schemata: tell, adopt and infer. These are complex objects characterising agents, attitude types,
preconditions, effects, constraints etc. The tell schema is used for communication about attitudes; the
adopt schema allow an agent to adopt an attitude held by another agent; and the infer schema drives

2«Speaker” and “hearer” are conventional dialogue terms: there is of course no actual speech processing in our system.



inference from a rule. To support these schemata there are further rules for ascription, so e.g. the hearer
assumes the speaker believes the dialogue preconditions hold; for attitude adoption, so e.g. if the speaker
is strongly committed to a belief, this is reason for the hearer to adopt it; and for prediction, so e.g. the
speaker knows that if it communicates a strong commitment to an attitude, this is reason for the hearer
to adopt it. Specifically, for instance, if the speaker communicates commitment strong, the prediction is
that the hearer will endorse the communicated belief 2¢-pos or communicated intention desire-pos.

Prediction is complex, and to implement it adequately we have introduced finer levels of endorsement
distinguishing an agent’s predictions about its own (auto) attitudes from its predictions about another
agent (alter)’s attitudes. These endorsements allow justifications like auto taking alter’s strong endorse-
ment of a belief as ground for assuming that alter will continue to hold the belief, so auto can plan on
this basis. These auto and alter endorsement types are ordered, like the others, so prediction can be
extended over combinations of current and predicted attitudes in the calculation of preferences between
attitude sets. Supported by desire rules to identify leading intentions, and planning rules for intention
decomposition, the rules just described support an enriched version of the agent action cycle allowing for
prediction and action based on it, as well as just choice among attitudes.

All of these rule types are essential for planned action, and hence for the formulation and expression
of communications as one kind of action. However this apparatus not only generates speech acts. Our
approach as a whole also ensures stability of behaviour under dialogue, partly through minimal change in
belief revision, partly through the desire to minimise effort, and partly through a general predisposition
to avoid conflict.

For instance, in the earlier example dialogue fragment U’s first utterance, a tell act, leads to a
continuation response, an ask act by L on the same topic. U’s first utterance successfully communicates
U’s intention and and appears successful in changing L’s cognitive state. However U and L attach different
meanings to the term ‘Classical architecture’. Thus in contrast, while L’s first utterance is successful in
communicating L’s intention, it does not result in the desired communicative outcome (an answer to L’s
question). The attitude conflict that is now evident leads instead to a repair response and a new segment.
(Note that L predicted that the performance of the ask act would be successful in achieving the goal of
determining whether U was more interested in Greek or in Roman architecture, otherwise L. would not
have asked her question.)

4.2 The IR Functional Component

As mentioned, the task experts are not fully independent agents in our actual implementation, but rather
data and rule sets. In our experiments so far, moreover, they have been extremely simple. It is clear from
studies like [7] that a Problem Description agent in particular, if intended for a practical implementation,
would have to have ramified knowledge of a kind that is very hard to capture; and this is also implied
by the amount of resource required even for a domain-limited system like [19]’s expert. However our
primary aim has been to evaluate the mechanism of belief revision within the IR task context, and thus
for our Mark 1 implementation we provided only enough task knowledge to see whether the system could
simulate the kind of cooperative interaction, with a mutual exchange of information and development of
a search specification, that BBD’s transcripts exhibit. But even so, as the computational complexity of
the mechanism, which has to work on many attitude sets, makes computation very effortful, we could
only provide very simple task resources. Thus as described further below, we have only replicated human
behaviour in an extremely limited way, and whether we have demonstrated either the adequacy of the
model or the long-term practical viability of the approach is therefore a matter for discussion.

Taking [7] as our guide, as mentioned earlier, we have explored an architecture with all of BBD’s
five central experts: Problem State (PS), Problem Mode (PM), User Model (UM), Problem Description
(PD) and Retrieval Strategy (RS). The crucial problem is in defining each module’s goals in a way that
makes satisfaction specifiable and attainable. We have treated the first three of these modules in a
straightforward way in terms of limited attributes e.g. early or middle for PS, document type for PM,
and novice or expert for UM, which can be checked by simple system questions if not supplied, and which
are not mandatory for searching. PD and RS, especially the former, are more challenging even for a very
limited intermediary but realistically-intended task modelling, and we were particularly concerned that
both individual module knowledge bases and the ‘translation’ relationships between them should not be
completely obvious.

For test purposes we chose architecture as our subject domain. Problem descriptions have several
components: topic, subject area, document type and document level. Retrieval strategies have term,
database and document type components. These components essentially correspond to BBD subfunctions
as given in [7]. Document type and level do not exactly match ‘slit’, but they are clearly natural notions for
retrieval, and having several components met our requirement to model satisfaction. We assume, partly
for clarity in distinguishing various aspects of literature searching and partly as reflecting a common real
situation, that searching uses a controlled indexing language (thesaurus). Thus while for topic components



the PD module works with a description of the user’s need in a simple descriptor meaning language, the
RS module works to provide a request with Boolean operators linking terms. Then to guide the search
development task we have definitions of walid, minimal and good descriptions/requests. Thus for our
experiments we have naively defined a minimal description as one with a topic component with at least
three descriptors, collectively neither too general nor too specific; and a good description as one with such
a topic component and also document type and document level components (search area is inferred from
topic). Requests are similarly defined, so a minimal request has a term component (with at least three
terms), a good request has term, database, and document level components. Descriptors are organised
in hierarchies, tagged with broad subject labels, and are supplied with synonym alternatives (reflecting
natural language variation of concept reference). We assume that user and librarian have overlapping, but
not identical, descriptor vocabularies. The essential business of forming a sound problem description is
thus of choosing a useful number of descriptors from hierarchies with the appropriate subject orientation,
at the right hierarchical levels.

As noted, though the PD descriptors may look like index terms, we wanted to allow both for the
common separation of user language from search terms and for the task of formulating search strategies.
We therefore require a mapping of description onto request which also satisfies our RS goals for requests.
(For our simple experiments, however, we have stopped at the point of actual search and do not revise
requests after retrieval feedback.)

Like the descriptors, our terms are organised in hierarchies, with subject labels and with descriptors as
entry words. But we do not have a simple-minded one-one mapping between elements or structures. There
are three possible descriptor-term mappings: direct; or synonym to term; or ‘shift’ to less or more general
term. These data resources supply one part of the task apparatus: the other is provided by rules for
obtaining descriptions and requests meeting the goal criteria, and especially the RS goal. The architecture
thus assumes processing driven from the RS goal, with top-down goal resolution done heuristically (by
abduction). The mechanisms for PS, PM and UM are quite simple, essentially asking basic questions.
The system then has to derive an appropriate request from the PD description which may, e.g., mean
getting a modified description from the user. The system has to work over both description and request
attempting to satisfy the PD and RS goal criteria in the mapping transformation from description to
request.

All of this seems quite straightforward from the retrieval point of view. It is however necessary to
relate all these operations specifically to those of the belief-revision apparatus: they have to be expressed
in terms of attitudes, embedded in planning etc. In particular, the task goals have to be stated not just
as desires, but in such a way that they force the development of a satisfactory request. This is done by
the need to achieve a balance between effort cost for the librarian and relevant retrieved benefit for the
user.

Thus in our illustrative dialogue fragment, L’s question about the type of architecture U wants is
motivated by a desire to improve the problem description, since U’s initial topic component, the single
descriptor ‘Classical architecture’, does not constitute even a minimal problem description and would
result in a poor search request. To achieve L’s goal of a good request (to serve U’s goal for information),
L must devise a plan to modify U’s cognitive state, but one which also does not consume too many
computational resources.

We simulated the specific task model for PD using OPS5 and showed it was acceptable. However
when we attempted the actual implementation we found further simplification beyond that described
above was needed and we therefore reduced the task modules to three: UM, PD and RS, with UM and
RS very rudimentary.

5 Computational Testing

The main problem computationally is the cost of manipulating all the very many attitude sets that may
have to be considered: quite modest propositional proposals very naturally and plausibly generate large
numbers of alternative responses for assessment. For instance with a simple three-turn interchange and
small knowledge bases and rule sets, thousands of attitude sets may be produced. Our initial runs were
extremely time consuming, but with ‘optimisations’ of various sorts (see below) we reduced the time
required to a reasonable level, i.e. from days to minutes.?

Our test methodology was to see whether we could replicate example dialogue phenomena, i.e. forms
of information exchange from both topic content and pragmatic points of view. Thus we ran the system in
‘duplication’ mode, i.e. simulating two agents, one the librarian and one the user. We could not of course,

3Note that we can’t reduce the number of belief sets by eliminating those sets which are least preferred. Not only
would this make major revisions in the agent’s beliefs impossible (the agent having discarded the necessary ‘improbable’
belief sets), it causes problems when an intended state is achieved or when the world changes even in predictable ways.
Presumably the agent is reasonably sure a state it intends does not currently hold, otherwise it would not have been trying
to achieve it. However this means that the intended state will always be least preferred and therefore will be discarded.



with ‘free’; ‘intelligent’ agents expect that our system behaviour would simply copy that of the source
examples, as it were word for word: we were looking for similar behaviour. We also lacked the knowledge
sources to replicate the topics of dialogue examples taken from the BBD transcripts. What we did was
identify specific types of phenomenon which could be convincingly described as e.g. showing a failure of a
default assumption, and then, by providing an appropriate start state in out architecture domain, run the
agents to see what happened. Thus given a simple architecture domain version of a transcript dialogue
fragment, F, we sought a system-produced analogue F’. Altogether we ran four such simulations, covering
a range of phenomena including ‘failed inform’, the case where one agent’s knowledge is incomplete and
the agent knows it is; ‘misunderstanding’, where an agent lacks knowledge but does not realise it; and
‘failed prediction’, i.e. by an agent about the effects of an utterance. The simulations utilised a total of
11 domain-specific rules and 33 dialogue rules.

5.1 An Extended Example

So, for instance, for the exemplar fragment for a ‘failed inform’
U: I’m looking for books on Wren.
L: Who is Wren?
U: He designed St Paul’s Cathedral.
we obtained the two-agent system dialogue in our ‘message’ language
U : (tell U L (bel U (problem-desc wren)strong))
L : (tell L U (int L (exists 'z (bel L (class wren 'x))strong)))
U : (tell U L (bel U (class wren designed-st-pauls) strong))
(where we omit books for simplicity, abbreviate user and libr to U and L, and use !z as existential
quantifier): this may be glossed in English as
U: my problem descriptor is wren
L: I want a problem descriptor class for wren
U: the problem descriptor class for wren is designed st pauls
The way this works, heavily abbreviated and simplified, is as follows. U is initialised with beliefs
about wren including the belief that wren is a good problem descriptor, and with the possible intention
to share this descriptor with L:
(p-int U (bel L (problem-desc wren))desire-pos)
From this intention U constructs a plan to communicate with L, issuing in U’s first message above.
The plan has 5 steps, covering both telling the message content and doing so strongly enough to ensure
L adopts U’s problem description. At the point of ‘utterance’ U has 10 belief-type attitudes and 67
intention-type ones, in 4 candidate sets of beliefs and 12 of intentions. L infers U’s strong commitment
to wren and hence cooperatively adopts it as U’s problem descriptor. But as L cannot find wren in a
descriptor hierarchy, as needed to develop a sound problem description, L instantiates a rule to ask U
for wren’s class. L’s plan for finding out about wren from U has 14 steps, including e.g. one from the
conjunction of L’s belief that she does not know what class U believes wren to be and L’s intention to
adopt (i.e. to come to believe) what class U believes wren to be, to the intention that L. should come to
know what U’s class for wren is. This is represented as (step 3):
(not (bel L (exists !z (bel L (bel U (class wren !t)))))) &
(p-int L (exists 'z (action (adopt U L (bel L (class wren 'z)))))effort-pos =
(p-int L (exists 'z (bel L (bel U (class wren !1)))))
Another, later step (step 13) from L’s prediction that U will tell L what class U believes wren to be to
L’s prediction that she will know what class U believes wren to be has the form
(f-p-bel L (exists !z (action (tell U L (bel U (class wren z)))) =
(f-p-bel L (exists !z (bel L (bel U (class wren !r)))))
f-p-bel denotes a future possible belief, i.e. a prediction. L’s plan is based on the belief that U has a
class for wren, which is justified by a rule exploiting the fact that U produced this descriptor. L’s output
utterance strongly conveys L’s intention to discover U’s class information, and U therefore adopts this
as an intention to satisfy which, as U already has wren’s class, leads to U’s reply.* At this point, after
a 4-step plan, U has 179 propositions under consideration with 4 candidate belief sets and no less than
1152 candidate intention sets. The plans involve many rule applications, e.g. for step 13 above the rule

4When an intention is achieved, the intended state switches from disbelieved to believed, and the intention becomes
distintended. This change is propagated to higher-level states and intentions that depend on the intended state. For
example if, immediately prior to L’s utterance, U were to add “... and his design for St Paul’s”, L’s goal is achieved and
her plan is therefore aborted.



(f-p-bel 2A (exists ?X (action ?ACT))) &

(action-schema ?PRECOND ?ACT (?EFFECT)?CONSEQ ?EFFORT) =

(f-p-bel ?A (exists ?X ?EFFECT))
i.e. if an agent ?4 predicts that an action ACT will be performed, then it believes that the effects
?EFFECT of that action will be true in the future, is instantiated, and the whole seems extremely top-
heavy for such a minimal exchange between two agents. However it correctly demonstrates that when
such reasoning is properly decomposed, as it has to be, many non-trivial steps are needed to make even
the most obvious transitions from one attitude to another.

We had two problems with the computational testing. The first was that we could not identify natural
core beliefs, required for applying the connectivity (mc) preference criterion, and so could not evaluate
this important part of the basic theory properly. The second was that the system could only be radically
speeded up by not preserving previously planned, but unsupported, intentions, which also weakens our
claims for the theory. Subject to these qualifications, however, we found that our experiments did, on
an intuitive assessment (the only one practicable), deliver cooperative, problem-solving interaction of the
kind required for the task.

6 Assessment

Though computationally expensive, the tests were very limited in relation to the extent of task knowledge
and scope of dialogue found in the real IR case, as illustrated by e.g. [20] or [21], or as compared
with the computational dialogue modelling envisaged for the TRAINS project (see [22]). The problems
that emerged from our modelling study as a whole were with computational complexity; connectivity;
prediction both of world states and intentions; communicating commitment; and focusing in dialogue, so
e.g. a topic shift is recognised. Reducing complexity needs some way of limiting revision by e.g. taking
some attitudes as fixed; connectivity needs refinement to allow for quality as well as quantity of proof;
predictability needs a theory of common sense reasoning (a tall order); communicating commitment
requires another intensional layer in the system; and focusing needs at least something like recency.
These are all tough problems, with complexity and dialogue focusing as most pressing. Further, to get
a working implementation even for trivial dialogue examples, we had to introduce many rather specific
endorsement types. This conflicts both with the claim for a general approach and seems unsatisfactory
in itself. It is possible that the correct response is to operate on two levels, with a few universal types
subsuming a set of more particular, task and domain specific endorsements. This requires further study.

But we nevertheless believe that, limited though our experiments have been in many ways, they
do demonstrate that the sophisticated approach to attitude revision proposed by Galliers does lead to
appropriate communicative interaction between agents in an information-seeking situation like the library
one, and as such provides a deeper account of the intelligent intermediary than any hitherto proposed or
implemented. This may appear paradoxical given the rich, cognitively-motivated account of intermediary
functions that [9] gives. Our general approach is sympathetic to Ingwersen’s call for open interfaces that
support the user; and from one point of view our implementation falls within Ingwersen’s model, since
the explicit functions implemented are those Ingwersen and BBD share. We have also implemented,
though with elementary substance, other implicit functions. But we have done this in ways that cut
across Ingwersen’s function block structure. Moreover the specific requirement, for computation, to
model operational processing in detail has meant that we have not only begun to fill in key blanks in
Ingwersen’s and the BBD models: we have also made them more genuinely dynamic.
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