The Architecture and Implementation of
the BacGrid Simulator

Michael Lees Brian Logan John King
May 2006

1 Introduction

In this working paper, we describe the architecture and implementation of BACGRID,
a prototype Grid-based simulator for bacterial biofilms. Three versions of BACGRID
have been implemented: a non-distributed version, a version based on the High Level
Architecture (HLA) simulator interoperability framework which allows the distribution
of simulation components across multiple processors in a single cluster or at remote
sites, and a Grid version which allows distribution of simulation components on the
Grid. In the next section, we briefly review the biofilm model on which BACGRID is
based. In section 3 we outline the architecture of the simulator, before going on the
describe the various versions of the simulator in detail in sections 4 to 6.

2 Biofilm Model

The BACGRID simulator implements the biofilm model described in [3]. For conve-
nience, we summarise the key features of the biofilm model below.

The model system comprises a simple 3D ‘biofilm reactor’ consisting of two com-
partments, bulk liquid and biofilm. The bulk liquid compartment contains a (well
mixed) solution of S different soluble substrates. The biofilm grows in a rectangu-
lar box of dimensions Lx, Ly, Lz with periodic x and y boundaries, and is assumed
to consist of B different types of biomass. In addition to the biomass itself, the biofilm
compartment contains a single type of extracellular polysaccharide (EPS) and @ differ-
ent types of quorum sensing molecule. The biofilm and bulk liquid compartments are
in contact and exchange solutes only by diffusion. Substrate and biomass which move
beyond the x and y boundaries reappear at the opposite boundary. Bacteria, substrates
and other material are assumed to be washed away once they reach the z boundary
(detachment layer). For efficiency of computation, individual cells are aggregated into
bacterial ‘particles’, as in [8]. Each particle represents a variable number of cells of a
single bacterial strain. Particles allow the use of aggregated models of continuous pro-
cesses (growth, division and displacement); however some processes must be modelled
at the level of individual cells. Cells within a particle can exist in two different states:
up-regulated and down-regulated. Particles keep track of the number of up-regulated
and down-regulated cells they currently contain and cells can change from one state to
another at each timestep, in response to the level of QSMs.

The biofilm compartment is discretised into sub-compartments or ‘voxels’ contain-
ing substrate and signalling molecules. Substrate and QSM concentrations are assumed

to be uniform across each individual voxel, and the upper bound on the size of a voxel
is chosen such that the substrate and QSM concentration values are ‘reasonably close’
to the continuous values. The size of voxels, [x, is chosen appropriately for the system
to be modelled, with smaller values (criteria being deduced from the corresponding
continuum models) giving greater resolution at increased computational and commu-
nication cost. However the voxels are typically fairly large in relation to the size of a
cell, e.g., each voxel may contain of order 102 particles/10* cells. Each voxel contains
zero or more particles of each biomass type (including EPS). The particles in a voxel
exert a ‘pressure’ on the particles in the neighbouring voxels which is a function of the
relative number of particles in the voxels, and these pressures are used to displace par-
ticles during the division of biomass. The arguments used in developing this pressure
model are again based on the continuum modelling, in this case building on multiphase
formulations for growing populations such as those described in [1]. Each voxel has six
adjacent voxels, connected at each face, which are considered in determining relative
pressures, and into which particles may be displaced. Voxels have a pre-determined
maximum particle capacity, N, and the pressure in the voxel is considered to be infi-
nite when this maximum is reached. N is calculated using [x and the maximum radius
of a particle, R, assuming simple cubic packing. EPS particles behave in the same
way as biomass particles for the purposes of the pressure calculation. Each particle
has a notional 3D position within its containing voxel which is used for visualisation
purposes (see Figure 1). These notional positions are chosen such that the particles do
not overlap. The pressure model and maximum particle size are chosen to ensure that
there is enough free space in the voxel for this to be possible.

There are two main processes which determine the evolution of the model: the dif-
fusion of substrate and QSM from voxel to voxel and changes in state of the particles
in response to the substrate and QSM concentrations in their surrounding voxel. Par-
ticles are modelled as agents and implement a simple model of growth, division and
displacement similar to that in [4], and up-regulation (e.g., the production of extra-
cellular polysaccharide) in the presence of QSM [10]. These two processes interact:
particles consume substrate and produce QSM, leading to transport associated with the
diffusion gradients. The transport between voxels corresponds precisely to a simple
central-difference discretisation of the relevant continuum reaction-diffusion equations.

The model provides a generic multi-scale framework for modelling populations of
cells, which spans from the cellular level to the population level. In contrast to previ-
ous work, e.g., [8], it incorporates both aggregated and individual models of cellular
processes, allowing the resolution of the model to be tailored for a particular modelling
problem, while at the same time remaining computationally tractable. For example,
in experiments to investigate the effect of QSM inhibitor on the up-regulation of the
population, we have successfully simulated models containing 106 cells (10* particles)
on a single processor. While the cell models used in the current prototype are naturally
somewhat simplistic, the approach provides a generic framework into which differ-
ent types of cells and more detailed models of gene expression and signalling can be

plugged.

3 System Architecture

In this section we describe the high level architecture of the BACGRID simulator.
BACGRID is intended as a framework for systems biology simulations. The de-
velopment of such simulations typically requires collaborative effort from researchers

with different domain knowledge and expertise, often at different locations. Support for
collaborative model development and distributed execution of the resulting simulation
models was therefore a key objective in the design of BACGRID.

To support collaborative model development, BACGRID utilises a combination of
two emerging standards and their supporting middleware: the Grid and the High Level
Architecture. The Grid supports e-Science through resource discovery, secure access
to remote computational resources, data archiving and sharing etc., allowing virtual
research teams to collaborate to solve research problems. The High Level Architec-
ture (HLA) is an IEEE standard [2] for simulator interoperability, which supports the
creation of distributed, composable simulations. These two technologies are comple-
mentary, and in combination they offer the promise of “on-demand” development of
systems biology simulations. The interoperability of simulators provided by HLA is
critical to the collaborative development of biological simulations and effective reuse
of simulation components. In addition, many of the services necessary to support dy-
namic composition of simulations, e.g., model discovery and matching, secure exe-
cution, migration and load balancing, sharing and archival of simulation results etc.,
which are not addressed by the HLA standard, can potentially be provided by the Grid
infrastructure.

To facilitate inter-operation and distribution, the implementation of the BACGRID
simulation model is decomposed into a ‘diffusion module’ and one or more ‘model
regions’. The diffusion module is responsible for diffusing substrate and signalling
molecules throughout the entire computational domain. Each model region processes
one or more voxels, and handles the growth and division of particles within voxels, and
the displacement of particles between voxels. In addition there is a visualisation mod-
ule for run-time monitoring of the simulation progress and post-simulation analysis of
results (see Figure 1). The model region and visualisation modules are implemented
using the MASON agent toolkit [6].! (The visualisation module does not use the sim-
ulation capabilities of MASON, but makes extensive use of MASON’s 3D libraries.)
The diffusion module is written in Java.

Interaction between modules can be by means of procedure calls, HLA [2] (RTI)
calls, or Grid invocations, each resulting in a different version of the core BACGRID
system. The non-distributed (procedure call) version was used for initial model val-
idation and as a benchmark for the evaluation of the distributed versions. The HLA
version allows the distribution of BACGRID modules across multiple processors in a
single cluster or at remote sites. The HLA distribution uses the DMSO RTI 1.3NGv6
Java bindings from the DMSO RTI reference distribution. The Grid version extends the
HLA version to allow BACGRID modules to be distributed as Grid services. The Grid
distribution is based on HLA_GRID [12], which allows HLA-compliant simulators to
be instantiated and linked using Grid services.

In what follows, we discuss the three versions of BACGRID in turn, explaining
how each version builds on its predecessor, and how distribution and inter-operation
are achieved in the HLA and Grid versions.

4 Non-distributed Version

In this section we describe the non-distributed version of BACGRID in which the mod-
ules communicate via procedure calls. For simplicity, we assume that each model

ISome minor extensions to mason were required to support multi-phase Steppable objects and ex-
tendable sequences.

Figure 1: Model visualisation

region processes a single voxel, and use the terms voxel and model region interchange-
ably. (In reality, model regions typically process more than one voxel, and the HLA
and Grid versions of BACGRID facilitate distribution by mapping ‘non-local’ voxel to
voxel communication into HLA or Grid invocations, see below.) We give a high level
description of a single iteration of the model. This illustrates the operation of both the
diffusion module and the voxels (model regions) and how they interact to update the
state of the model.

The state of the model at a given timestep ¢ consists of the state of all the particles
and voxels at that timestep. The state of each voxel e is given by the number of particles
of each biomass type it contains ny ., and the concentrations of each substrate ¢, . and
signalling molecule a,.> The state of each particle j is given by its biomass type
bj, its mass m;, the number of up- u; and down-regulated d; cells it represents, its
containing voxel e and its (notional) 3D position within that voxel.

Determining the state of the model at ¢ + 1 involves determining, for each voxel,
the change in substrate and signalling molecule concentrations due to diffusion dc e,
consumption ks . (in the case of substrate) and production z, ; (in the case of sig-
nalling molecule), and for each particle, its change in mass over the timestep dm,; (and
hence the change in the number of cells the particle represents dn;), and the change
in the number of up- du; and down-regulated dd; cells it contains and the particle’s
containing voxel.

The processing of the voxels at timestep ¢ occurs in two phases. The first involves
the execution of the voxels to calculate the consumption of substrate by particles, par-
ticle growth and the number of particles following division of the biomass. Processing
of phase one within each voxel itself occurs in three steps. Firstly, the growth step in-
creases the mass of each particle within each voxel given the concentration of substrate
for this timestep in the voxel. (For ¢ = 0, the concentrations and number of particles
are taken as parameters of the simulation.) This also gives the total consumption of all

2See [3] for the definitions of symbols and equations.

substrates by all particles in this voxel for this timestep.
k. = Growth(c.)

where Growth(c,.) is given by equation (3.6) for each biomass type b in the voxel e.
The second step computes the production of signalling molecule by each particle in the
voxel.

Ze = QSM(ae)

where QSM (a.) is given by equation (3.13). The third step is particle division: each
particle which reached the maximum allowable mass during the growth step is split
into two particles, increasing the number of particles in the voxel.

n. = Division(Growth(c.))

Each voxel then sends the consumption of each type of substrate and the amount of
QSM produced by its particles to the diffusion module. At the same time, each voxel
sends its current particle counts to each of its neighbouring voxels.

The second phase of the timestep involves computing the changes in substrate and
signalling molecule concentrations due to diffusion. The diffusion module uses the
substrate consumption and signalling molecule production for this timestep to calculate
the new substrate and signalling molecule concentrations for the next timestep. The
diffusion module then sends each voxel the substrate and QSM concentrations for the
next, t + 1, timestep.

In parallel with the execution of the diffusion module, each voxel also executes a
displacement step, which uses the difference in pressure between the voxel and each
of its adjacent voxels (which each voxel calculates using the number of particles in
each of its neighbouring voxels) to determine movement of particles between voxels.
The (possibly empty) list of displaced particles is then sent to each of the neighbouring
voxels. A snapshot of the state of a particle for migration purposes consists of its
biomass type, mass, the number of up-regulated cells, the voxel from which the particle
is being migrated and the direction in which it is being migrated. Once each voxel has
received a list of transfer particles from all it’s neighbours the voxel updates its particle
counts for the next timestep. The timestep is then incremented and the cycle repeats
with the voxels using the newly calculated concentrations and particle counts.

In the non-distributed version of BACGRID, communication between modules is
implemented using procedure calls. However, to facilitate implementation of the dis-
tributed versions, the diffusion module maintains a local copy of the substrate and QSM
concentrations in each voxel.

5 HLA Distribution

In this section we describe the HLA version of BACGRID which allows the distribution
of BACGRID modules across multiple processors in a single cluster or at remote sites.

The High Level Architecture (HLA), is a framework for simulation reuse and inter-
operability originally developed by the US Defence Modelling and Simulation Office
[5]. Using HLA, a large-scale distributed simulation can be constructed by linking
together a number of geographically distributed simulation components (or federates)
into a single, larger simulation (or federation). The federates may be written in dif-
ferent languages and run on different machines. HLA (with minor revisions) has been

adopted as an IEEE standard (IEEE 1516) [2] and as such is likely to be increasingly
widely adopted within the simulation community. HLA-compliance will therefore be
an increasingly important feature of the next generation of simulators, allowing inter-
operation with other simulations, re-use of simulation components and the distribu-
tion of simulations across multiple computers to increase the overall performance of a
global simulation.

The HLA consists of two parts: a set of rules specifying how federates can inter-
operate, and a runtime infrastructure (RTI) which provides core simulation services to
an HLA federation. Each HLA federation has a Federation Object Model (FOM) which
specifies how communication between federates is achieved. The FOM consists of a set
of object classes and a set of interaction classes. Each object class defines a (possibly
empty) set of named data called attributes. Instances of these object classes and their
associated attribute values are created by the federates to define the persistent state of
the simulation. Federates evolve the state of an object instance in simulation time by
supplying new values for its attributes. An interaction is a set of named data, called
parameters, which forms a logical unit within the federation, e.g., an event within the
simulation model. The data comprising an interaction is sent as a unit by a federate to
the other federates in the federation. Unlike objects, interactions have no continued ex-
istence after they have been received. Object and interaction classes are organised into
(separate) inheritance hierarchies, in which each class inherits the attributes (for ob-
jects) or parameters (for interactions) of its superclasses. Each federate must typically
translate from its internal notion of simulated entities to HLA objects and interactions
as specified in the FOM. The structure of all FOMs is defined by the Object Model
Template (OMT) which ensures federations can communicate with one another.

Federate 1 Federate 2 Federate n
cee
RTI Federate RTI Federate RTI Federate
Ambassador |Ambassador| Amt A Ambassador| Ambassador |

‘ Runtime Infrastructure ‘

Figure 2: Architecture of federates in an HLA federation

The RTT is middleware that provides common services to the federates. All commu-
nication between the federates in a federation and between federations is accomplished
via the RTI. Each federate contains an RTI Ambassador and a Federate Ambassador
along with the user simulation code (see Figure 2). The RTI Ambassador handles all
outgoing information passed from the user simulation to the RTI. Each call made by the
RTI Ambassador typically results in a corresponding callback on other federates. For
example, updating the value of an attribute of an instance of an object class defined in
the FOM on one federate will result in a callback containing the new value on federates
which subscribe to the attribute. It is the task of the Federate Ambassador to handle
these callbacks and invoke appropriate code in the user simulation, e.g., update a the

value of a field or variable representing the attribute.> The FOM is passed to the RTI at
the beginning of an execution and effectively parameterises the RT1I for that federation.

The HLA provides services in six areas, namely Federation Management, Object
Management, Declaration Management, Ownership Management, Data Distribution
Management, and Time Management. In the remainder of this section, we illustrate
the role of Object and Declaration Management, Data Distribution Management and
Time Management in distributing a BACGRID simulation.*

In this section, we describe three aspects of the HLA version of BACGRID in more
detail:

1. the types of federate and their roles in distributing the simulation;
2. the way the federates communicate with one another; and

3. how the model timestep relates to HLA time.

5.1 BACGRID Federates

In the HLA version of BACGRID, the modules described in section 3 are implemented
as federates which communicate via HLA RTI calls. The federates act as wrappers for
the corresponding BACGRID modules and handle communication with other federates
running on different processors.

A BACGRID federation consists of two types of federate: a diffusion federate and
one or more model region federates. The diffusion federate is a wrapper for the dif-
fusion module, and as such is responsible for diffusion calculations throughout the
entire computational domain.’> Each model region federate wraps a model region (i.e.,
a MASON process responsible for simulating a contiguous collection of voxels), and
handles communication with the diffusion federate and with adjoining model region
federates (for pressure calculations and particle displacement). In the current proto-
type, a BACGRID federation consists of m + 1 federates: m model region federates
and one diffusion federate.

5.1.1 Diffusion federate

The diffusion federate maintains a local record for each voxel in the system contain-
ing its position, substrate and signalling molecule concentrations and the model region
to which the voxel belongs. During the simulation each model region federate sends
changes in concentrations of substrates and signalling molecules to the diffusion feder-
ate. When the diffusion federate has received this information for all voxels in the sys-
tem, it executes its diffusion algorithm until steady state is achieved. At this point the
diffusion federate reports the new concentrations of substrate and signalling molecules
back to each of the model region federates which in turn update the voxels.

5.1.2 Model region federate

The model region federates not only interact with the diffusion federate but also with
other model regions federates. The voxels within each model region execute in two

3The RTI and Federate Ambassadors in HLA version of the BACGRID prototype utilise the DMSO RTI
1.3NGv6 Java bindings.

4We do not consider Federation Management in BACGRID, as this is similar to other HLA federations,
and Ownership Management is not used in BACGRID.

5To date, we have not investigated the distribution of the diffusion module across multiple federates.

phases. The first phase grows and divides particles within the voxels, resulting in
substrate consumption, signalling molecule production and particle division. The new
substrate and signalling molecule concentrations are sent to the diffusion federate.

Particle division results in an increase in the number of particles and hence the
pressure in each voxel. Once the new pressures have been calculated, each voxel uses
the difference between its own pressure and that of each of its neighbours to calculate
the number of particles which must be transferred to equalise the pressure. For most
voxels within a model region, its neighbouring voxels are managed by the same the
same model region federate. However, for those voxels which lie on the boundaries of
a model region, some of the particle counts needed to calculate the pressure differences
are associated with voxels managed by neighbouring model regions. Each model re-
gion federate therefore maintains proxy voxels for those voxels in neighbouring model
regions which are adjacent to its boundary voxels. Figure 3 shows two adjacent model
regions and their overlapping proxy voxels. Voxel b in model region 2 has a corre-
sponding proxy voxel (proxy b) in model region 1. The arrow indicates the direction
of communication between the voxel and its proxy. Note that communication is one
way—model region 1 does not update proxy b. The state of proxy b (its particle count)
is updated by model region 2 once voxel b has finished its growth and division step. As
the x and y boundaries of the computational domain are periodic, the model regions at
each domain boundary maintain proxies for the corresponding voxels at the opposite
extreme of the computational domain. The z axis boundaries are treated as a special
case, with a particle count of infinity being returned for voxels ‘below’ z = 0, and a
particle count of zero for voxels ‘above’ z = L.

[Model Region

O Voxel
"3 Proxy Voxels

Model Region 2

Model Region 1

Figure 3: Two model regions and the proxy voxel overlap

At the end of the first phase of execution, the model regions send particle count up-
dates for their boundary voxels to each of their neighbouring model region federates.
Each message contains a list of pairs each containing the voxel id and the new par-
ticle count, and the information is used to update the receiving model region’s proxy
voxels. Once the relative pressures have been determined, each voxel computes the
number of particles to transfer in each direction. A list of particles to transfer is then
passed to the model region which determines if the receiving voxel is local. If the
transfer is between two voxels on the same model region, the particles and their state
are transferred through method calls. However, if the receiving voxel is remote, the
model region packages up the particle ready for transmission. Once all the particles
to be transferred in a given direction have been assembled, the model region sends
the particles to the adjacent model region, where they are unpacked and new particles

created in the appropriate voxels.

5.2 Communication Between Federates
Information is exchanged in 3 different ways within a BACGRID federation:

1. Model Region Federate — Diffusion Federate: consumption of substrate(s) and
production of QSM(s);

2. Diffusion Federate — Model Region Federate: substrate and QSM concentra-
tions; and

3. Model Region Federate — Model Region Federate: particle counts and particle
transfer.

In the remainder of this section we outline how HLA services are used to implement
communication between the federates in a BACGRID federation.

5.2.1 Object and Declaration Management

To reduce the number of RTT calls (and ultimately the number of Grid service invo-
cations in HLA_GRID), we chose to implement the communication between federates
using interactions rather than updates of object attribute values. While attribute values
are arguably a more natural realisation of the model state, interactions allow greater
flexibility in communication. For example, if voxels are modelled as objects, the num-
ber of attribute updates required for communication between the diffusion and model
region federates is linear in the number of voxels, and quadratic in the number of vox-
els on one side of a model region for communication between model region federates.
In contrast, the number of interactions required for communication between the diffu-
sion and model region federates is linear in the number of model regions and constant
for communication between model regions. Interactions also make it easier to package
data up into larger messages.

Handle Value

voxel ID S substrate consumptions Q gsm concentrations
2 voxel ID S substrate consumptions Q gsm concentrations
g
; voxel ID S substrate consumptions Q gsm concentrations
| |
I I
voxel ID ‘ S substrate consumptions Q gsm concentrations

Figure 4: Structure of amodelToDiffuser interaction

Four interaction classes were defined, all subclasses of an (abstract) BacGridInteraction
class:

e modelToDiffuser;
e diffuserToModel;

e particleCount;and

e particleTransfer.

modelToDiffuser and diffuserToModel interactions are used to transfer sub-
strate and signalling molecule concentrations from the model region federates to the
diffusion federate and vice versa. particleCount and particleTransfer in-
teractions are used to transfer particle counts between the boundary voxels of a model
region federate and their proxies managed by the neighbouring model region federates,
and to transfer particle state information between model region federates during par-
ticle displacement. In each case, a single interaction is used to transfer the relevant
information for all voxels in a model region (or all the boundary voxels on one face of
a model region in the case of particleCount and particleTransfer interac-
tions). For example, figure 4 illustrates the structure of a single modelToDiffuser
interaction. The content of the interaction is a handleValuePairSet, with voxel
IDs as handles and a list of substrate and signalling molecule concentrations as the
value. If each concentration is represented as a double (8 bytes) and a voxel’s 3D
position is used as its ID (3 ints, 12 bytes), the total size of a modelToDiffuser
interaction is:
N(12+8(S+Q))

bytes, where S is the number of substrates, () is the number of signalling molecule
types and NV is the number of voxels managed by the model region federate.

Handle Value
voxel ID P1 particles
- voxel ID P2 particles
o)
g
> voxel ID P3 particles
49
I I
I I
I I
voxel ID P PF particles
mass
type
up-reg

Figure 5: Structure of a particleTransfer interaction

Similarly, each model region sends a particle transfer interaction to each of its
adjacent model regions at every timestep. The structure of particleTransfer
interactions (see Figure 5) is similar to modelToDiffuser interactions, with the
voxel ID as the handle and a list of particles and their state as the value. The total size
of a single particle transfer interaction depends on the number of particles transferred
at a given timestep. For example, if we assume each of the n? boundary voxels transfer
p particles each timestep, and the voxel ID is represented as 3 ints (12 bytes) as before,
the biomass type by a short (2 bytes), the mass of the particle by a double (8 bytes),
and the number of up-regulated cells by an int (4 bytes) then the the size of single
particleTransfer interaction is:

n?(12+ P(8 +2+4))

10

In the HLA, a federate declares its interest in objects and interactions at the begin-
ning of a simulation by publishing any attributes it may update or interactions it may
send during the simulation and subscribing to attributes which it would like to receive
updates for and interactions it would like to receive. In the BACGRID federation the
publication and subscription of each federate is straightforward. The diffusion federate
publishes di ffuserToModel interactions, and subscribes to modelToDiffuser
interactions. A model region federate publishesmodelToDiffuser,particleCount
and particleTransfer interactions, and subscribes to di ffuserToModel,particleCount
and particleTransfer interactions.

5.2.2 Data Distribution Management

With the publications and subscriptions outlined in the previous section, each model
region would receive substrate and QSM concentrations for all model regions in the
system.6 To minimise network traffic, BACGRID uses the HLA Data Distribution Man-
agement (DDM) services to constrain the subscription of each federate. Each model
region therefore only receives interactions which contain information about its state.

As noted in section 5.2.1, information is exchanged in three ways within a BAC-
GRID federation:

1. Model Region Federate — Diffusion Federate: consumption of substrate(s) and
production of QSM(s);

2. Diffusion Federate — Model Region Federate: substrate and QSM concentra-
tions; and

3. Model Region Federate — Model Region Federate: particle counts and particle
transfer.

In the case of transfers from model region federates to the diffusion federate, no
DDM is necessary, as the diffusion federate receives this information from all model
regions.’

The second type of information exchange is from the diffusion federate to the model
region federates. In this case DDM is required to ensure each model region only re-
ceives new concentrations for the voxels it manages. To do this we define a 3D rout-
ing space of model regions, and have each model region specify a single point in the
routing space, namely its own position, when subscribing to diffuserToModel in-
teractions. The position of each model region is defined in relation to the other model
regions in the domain. When the diffusion federate sends the interactions containing
the concentrations of substrates and QSMs, it specifies the point in the routing space
corresponding to the position of the model region which the updates are intended for.

Particle counts are transferred from model region federate to model region federate,
with each model region federate sending the particle counts of its boundary voxels to
the neighbouring model region federates. To enable this, each model region federate
defines six DDM regions for particle counts, one for each face of the model region it
manages. A neighbouring model region federate subscribes to the DDM region asso-
ciated with the adjoining face. For example, Figure 6 shows a plan view of a model

6Since in HLA there is no way for a federate to know how many other federates there are in the federation
or which objects and interactions they are currently subscribed to, there is no way to specify a particular
federate as the recipient of an interaction or attribute update.

7If the diffusion algorithm were distributed across multiple federates, this would no longer be the case.

11

region federate and the DDM subscription regions of two of its neighbouring model
region federates. In the figure, the federate model region 1 has two DDM regions (2
and 3) which are subscribed to by the federates model region 2 and 3. In addition, the
federate model region 1 also subscribes to corresponding DDM regions in the neigh-
bouring model regions (not shown). The same DDM regions can be used to manage
distribution of particleTransfer interactions between model region federates.

Model Region 3

[1Model Region

O Voxel
] DDM Region
Q
=t
g
=}
=
w
:*ﬂ DDM REGION3 *:":
| o || Subscribe
Z. >
S
g
5l
| &
1 =
|2
a
Model Region 1 Model Region 2

Figure 6: Three model regions and the the DDM regions used for interactions

5.2.3 Time Management

As described in section 4 (and in detail in [3]), the model timestep consists of two main
phases each comprising a number of steps. In this section we sketch a single iteration
of the model timestep in BACGRID, indicating which computations execute in parallel,
the points at which information is exchanged between the diffusion and model region
federate(s) and how federates synchronise using HLA time management services.

Each model timestep begins with the model region federates executing their vox-
els. Each voxel in turn executes its particles’ growth and division step. All model
region federates execute in parallel, however voxels and particles are executed sequen-
tially within each model region. Once the growth and division step is complete, each
model region has new values for substrate and signalling molecule concentrations and
particle counts. Each model region federate then sends an interaction containing the
substrate consumption and and signalling molecule production for each of its voxels
at this timestep, which is received by the diffusion federate. It also sends the particle
counts for its boundary voxels to the DDM regions corresponding to its neighbouring
model region federates.

At this point phase two of timestep begins. Once the diffusion federate receives
modelToDi f fuser interactions from all model region federates, it executes the dif-

12

fusion algorithm until steady state is achieved. The diffusion federate then sends an in-
teraction containing the new substrate and signalling molecule concentrations for each
model region federate to the appropriate DDM region. In parallel, each model region
federate calculates the number of particles to transfer between local and remote voxels
using the particle counts computed during phase one. It then determines which parti-
cles are to be transferred to voxels managed by neighbouring model region federates
and sends an interaction to the DDM region corresponding to each neighbouring model
region federate containing the state(s) of the transferred particle(s). The diffusion fed-
erate (diffusion algorithm) and the model region federates (pressure calculations and
particle transfer) execute concurrently in phase two.

Each model timestep corresponds to two HLA timesteps. Each exchange of infor-
mation (via an interaction) has an associated timestamp. All interactions generated in
phase one have timestamp ¢ + 1. Once a model region federate has consumption of
substrates and production of QSMs to the diffusion federate and particle counts to its
neighbouring model region federates, it makes an HLA time advance request to time
t + 1. The diffusion federate also makes a time advance request to ¢ + 1 at the begin-
ning of the model timestep.® All interactions generated in phase two have a timestamp
of ¢ 4+ 2. Once the diffusion federate has sent an interaction containing the updated
substrate and signalling molecule concentrations for the next model timestep to each
model region federate, it makes an HLA time advance request to time ¢ 4 2. Similarly
each model region federate makes a time advance request to ¢ + 2 once it has sent an
interaction to each neighbouring model region federate containing the particles to be
transferred at this model timestep. When time advances to ¢ + 2 each model region
federate updates their boundary voxels with any particles transferred from neighbour-
ing model regions. This completes processing at this model timestep, and all federates
then advance to the next model timestep.

5.3 HLA Implementation

The HLA distribution is based on the DMSO RTI 1.3NGv6 Java bindings from
the DMSO RTI reference distribution. Java classes were defined to imple-
ment the BacGridInteraction, modelToDiffuser, diffuserToModel,
particleCount and particleTransfer interactions. Other classes, e.g.,
classes representing logical times, were provided by the DMSO RTI 1.3NGv6 Java
bindings, as were the implementations of the RTI and Federate Ambassadors.

6 Grid Distribution

The Grid version of BACGRID extends the HLA version to allow the inter-operation
of federates using Grid services. The use of Grid services has a number of advantages
compared to distribution using the standard HLA protocols. In order to run a distributed
simulation using HLA, special arrangements have to be made beforehand to ensure
the availability of the required hardware and software. Such arrangements typically
imply some form of centralised control, as the inter-organisational sharing of resources
involved impacts issues such as security and resource allocation policies [12]. For
example, significant firewall configuration is required if the standard HLA protocols are
used. In contrast, Grid services support secure, scalable inter-operation of simulation
components, simplifying coordination and management of simulations.

8The diffusion federate remains blocked until the model region federates request time advance to t 4 1.

13

The BACGRID Grid distribution is based on HLA_GRID [12], which allows HLA-
compliant simulators to be instantiated and linked using Grid services. HLA_GRID
employs a Federate-Proxy-RTT architecture, in which a proxy acts on behalf of the
federate in interacting with the RTI. Participants (client federates) in a simulation run
their federate codes at their local sites, and proxies and the RTI is executed at remote
Grid resources. RTT services are exposed as Grid services, and federate codes and their
respective proxies communicate with each other through Grid services and a Grid-
enabled HLA library, which provides the standard HLA API to the federate codes, and
translates RTT calls into Grid service invocations. HLA_GRID includes additional Grid
services to support the creation of the RTI, discovery of federations, etc.

HL A_GRID aims to improve the interoperability and composability of HLA-compliant
simulation components using the facilities of the Grid [9]. In contrast to the standard
HLA which requires that each federate be linked against the RTI libraries, clients need
only the HLA_GRID library (which contains no RTI code) for a federate to be able to
inter-operate with other federates. Users can therefore run simulations without having
to deploy or manage the RTI. HLA_GRID itself is implemented in Java, allowing inte-
gration with simulators on a wide range of platforms. In addition, an entire simulation
can be provided as a Grid service, which can be discovered and used via HLA_GRID,
allowing hierarchical federations to be constructed using HLA_GRID proxies in a way
similar to [].

At the current state of development, HLA_GRID allows users at different sites to
cooperate in the development of a simulation which combines simulators which they
have developed locally. It also allows users to combine their local simulator with a
pre-existing simulation provided as a Grid service. As yet it does not allow simulation
developers to offer simulation components as Grid services. In the longer term, each
federate could manifest itself as a Grid service for use by the simulator. Such ‘simula-
tion Grid services’ would allow the automatic composition of simulation components
obtained by web service registries. However automated federate discovery and con-
figuration requires the definition of appropriate ontologies and languages to represent
federate metadata to allow the orchestration of simulations by matching user require-
ments with appropriate federates, and is outside the scope of the current project. See
[9] for more details.

6.1 Architecture of an HLA _GRID Federate

In HLA_GRID, each federate consists of two parts: the ‘federate proper’ which ex-
ecutes on the client side, and the proxy which executes remotely. The client side
contains the user-supplied federate code, the Client RTI Ambassador and the Client
Federate Ambassador Service.’ The client side components usually run on a local ma-
chine (from the simulation model’s point of view). The proxy consists of the Proxy
RTI Ambassador Service and the Proxy Federate Ambassador. These act on behalf of
the client and interact with other proxies via the RTI, usually over a LAN at a remote
site.

The Client RTI Ambassador provides a standard HLA API to the user federate code,
and allows communication with the proxy via the Grid. RTI calls by the federate code
result in remote Proxy RTI Ambassador Service invocations with method parameters
embedded inside the invocation. The proxy is responsible for translating Proxy RTI

9The terms used to name the various parts of the HLA_GRID framework have evolved over time. In what
follows, we use the terminology adopted in [9].

14

Ambassador Service invocations into normal federate initiated RTI calls, and embed-
ding Federate Ambassador callbacks from the RTT into Client Federate Ambassador
Service invocations. Both the Proxy RTI Ambassador Service and the Client Federate
Ambassador Service are implemented as Grid services using the Globus toolkit. All
the methods of the RTI: : RTIambassador class and the callbacks provided by the
RTI: :FederateAmbassador class from the DMSO RTI 1.3NGv6 Java bindings
are exposed to Globus. While both parts of the federate are coupled together (by their
respective Grid services) to form a single ‘federate executive’, the proxy decouples the
client and the RTI, with the simulation logic and state being maintained at the client
side. The proxy only provides mechanisms for simulation management, such as feder-
ation management and time management.

In addition to the Grid services which enable communication between the client’s
federate code and the remote RTI, HLA_GRID provides Grid services for creating the
RTT and discovering the federation: persistent RTI service factories are used to create
instances of RTI services; and a persistent indexing service maintains the mapping
between federations and handles of corresponding RTI services instances. Details of
how these services are created, managed and coordinated can be found in [14].

When the simulation starts up, the federate code invokes the persistent RTI service
factory to create an RTI service instance. The newly created RTI instance and the
federation name are registered with the index service so that other federates in the same
federation will be able to look up the correct RTI instance. The Proxy RTT Ambassador
Services for each federate are then started. The identity of each federate’s Proxy RTI
Ambassador Service is passed to the corresponding Client RTI Ambassador. The Client
Federate Ambassador Service for each federate is then initialised and registered with
the corresponding Proxy Federate Ambassador.

Thereafter, simulation proceeds as in the HLA version of BACGRID. Simulation
events and state changes generated by the user-supplied federate code result in RTI
function calls to the Client RTI Ambassador, which translates them into Grid service
invocations to access the remote Proxy RTI Ambassador Service on the proxy side. The
Proxy RTI Ambassador Service interacts with the real RTI by executing the real RTI
calls on behalf of the client. Return values are sent back as the return value of the Grid
service invocation. Callbacks from the RTI to a federate are translated into invocations
of the Client Federate Ambassador Service by the Proxy Federate Ambassador. The
Client Federate Ambassador Service converts these into ‘real’ RTI callbacks to the
federate.

Previous work [13] suggests that an RTT call in HLA_GRID incurs an overhead
of about a factor of 5 compared to HLA. Where possible we have therefore designed
the simulator to minimise the number of RTI and hence Grid service invocations (see
section 5.2.1), while at the same time trying to maintain a straightforward mapping
from biological to simulation concepts.

6.2 HLA_GRID Implementation

The original version of HLA_GRID was implemented at Nanyang Technological Uni-
versity and was based on Globus Toolkit version 3 (GT3)'? (see Figure 7). It included
standard HLA/RTT APIs to support Federation, Object, Declaration, Ownership and
Time Management. For a more detailed description of the GT3 version of HLA_GRID,
see [11, 12]

10gee http://www.globus.org/

15

[RTI EXEC]

ProxyProvider

proxyRTIComponent proxyFEDcomponcs /O
[RTlambassador | =+ | FED; |
Connection to Client Service

ClientProvider

fffffff > User Call

N
N N RTlambassador

N fedmethodeall Connection to Proxy ———= Grid service invocation

- < HLA_GRID code

/ User Code

[] Rllcode

<> Grid Service Operation
FederateThread [€———————— FEDambassador

Figure 7: Architecture of HLA_GRID (GT3 version)

To allow HLA_GRID (and hence BACGRID) to be used on the current generation
of Grid infrastructure, it was necessary to reimplement HL A_GRID for the current ver-
sion of the Globus Toolkit (version 4). At the same time, we took the opportunity to
refactor the design of HLA_GRID (see Figure 8). For example, the GT3 version of
HLA_GRID was implemented as a single grid service, with the particular RTT service
being indicated by a parameter to the Grid service invocation. In the GT4 version of
HLA_GRID, each RTT service is exposed as a separate Grid service, and the arguments
to the RTT calls are mapped to SOAP complex types by the client RTI Ambassador. For
example, the RTI type ParameterHandleValuePairSet is mapped to a corre-
sponding SOAP complex type. A full list of SOAP types can be found in table 1.

Type Constituting types
ArrayOfByte bytel]
HandleSet int[]
HandleValuePair int, ArrayOfByte
EventRetractionHandle | int, int
HandleValuePairsSet HandlevValuePair/[]
Time ArrayOfByte

Table 1: SOAP complex types used in the HLA version of BACGRID

As noted in [7] there are particular problems in implementing RTI DDM services
as Web or Grid services. As a result, the GT3 version of HLA_GRID (described in
[12]) does not implement the Data Distribution Management services of the RTI. The
benefits of DDM for a BACGRID federation have yet to be quantified, and is not clear
if the additional effort required to implement DDM in the GT4 version of HLA_GRID

16

is warranted. We have therefore decided not to implement DDM services in the initial
GT4 version of HLA_GRID.

[RTIEXEC]

1 [THE HLA_GRID GT4 FEDERATE

Federate Proxy

Grid service operation invocation

HLA_GRID code

LRC ‘

ProxyFedAmbassador i ProxyRTIAmbassador User Code
— ReflectAttributeValues ~ <— = UpdateAttributeValues > — [RTicode
—— -] —
[bR R B 3 < Grid Service Operation
— - P - - | e i
4 TimeAdvanceGrant <« = TimeAdvanceRequest > — L1 GrdService
| ewerereresshasesasasasesesasasasesess «{d THE GRID:::sctcencnrnsnnnnnnnnnsnnsnsannnsnnnnnnnnns
| Federate Client
- START
iClientFedAmbassador ClientRTI F reator
r—— _ReflectAttributeValues +— 1 UpdateAttributeValues N
[-~ <H mainFunction
— : -~ -
e - - - -
f— < TimeAdvanceGrant +— L~ TimeAdvanceRequest ~{-|

FederateThread

|

FED:

User
Simulation

Figure 8: Architecture of HLA_GRID (GT4 version)

The GT3 version of HLA_GRID used in the experiments reported in [13] included
additional support for remote exception handling. The Proxy RTI Ambassador Service
was extended to allow exceptions generated by RTI calls to be filtered at the proxy
side. After communication with the Proxy RTI Ambassador Service is established,
the Client RTI Ambassador registers ‘uninteresting’ exceptions with Proxy RTI Am-
bassador Service: only unregistered exceptions are returned to the client as Apache
Axis faults. Registered RTI call exceptions are handled (discarded) remotely at the
proxy side. These extensions were necessitated by the particular requirements of the
HLA_REPAST agent toolkit used in these experiments, and support for remote excep-
tion filtering has not been reimplemented in the GT4 version of HLA_GRID developed
at Nottingham.

References

[1] H. M. Byrne, J. R. King, D. L. S. McElwain, and L. Preziosi. A two-phase model
of solid tumour growth. Applied Mathematics Letters, 16(4):567-573,2003.

[2] IEEE Standard for modeling and simulation (M&S) High Level Architecture
(HLA) — Framework and rules. IEEE, 2000. (IEEE Standard No.: 1516-2000).

[3] John King, Michael Lees, and Brian Logan. Agent-based and continuum mod-
elling of populations of cells. Technical report, University of Nottingham, De-
cember 2006.

17

[4]

—
9]
—

(8]

[9]

[11]

[12]

[13]

[14]

Jan-Ulrich Kreft, Ginger Booth, and Julian W. T. Wimpenny. BacSim, a simu-
lator for individual-based modelling of bacterial colony growth. Microbiology,
144:3275-3287, 1998.

Fredderick Kuhl, Richard. Weatherly, and Judith Dahmann. Creating Computer
Simulation Systems: An Introduction to the High Level Architecture. Prentice
Hall, 1999.

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel
Balan. MASON: A multiagent simulation environment. Simulation, 81(7):517—
527, 2005.

Katherine L. Morse, David L. Drake, and Ryan P. Z. Brunton. Web enabling
an RTT — an XMSF profile. In Proceedings of the 2003 European Simulation
Interoperability Workshop. European Office of Aerospace R&D, Simulation In-
teroperability Standards Organisation and Society for Computer Simulation In-
ternational, June 2003. Paper number 03E—-SIW-063.

Cristian Picioreanu, Jan-Ulrich Kreft, and Mark C. M. van Loosdrecht. Particle-
based multidimensional multispecies biofilm model. Applied and Environmental
Microbiology, 70(5):3024-3040, May 2004.

Georgios Theodoropoulos, Yi Zhang, Dan Chen, Rob Minson, Stephen John
Turner, Wentong Cai, Yong Xie, and Brian Logan. Large scale distributed simu-
lation on the grid. In Sixth IEEE International Symposium on Cluster Computing
and the Grid Workshops (CCGRIDW’06), page 63, Singapore, May 2006. IEEE
Computer Society.

J. P. Ward, J. R. King, A. J. Koerber, J. M. Croft, R. E. Sockett, and P. Williams.
Early development and quorum sensing in bacterial biofilms. Journal of Mathe-
matical Biology, (47):23-55,2003.

Y. Xie, Y. M. Teo, W. Cai, and S. Turner. A distributed simulation backbone for
executing HLA-based simulation over the Internet. In Workshop on Grid Com-
puting and Applications, Proceedings of the Second International Conference on
Scientific and Engineering Computation, pages 96—103, Monterey, CA, USA,
June 2004.

Y. Xie, Y. M. Teo, W. Cai, and S. Turner. Service provisioning for HLA-based dis-
tributed simulation on the Grid. In Proceedings of the Nineteenth ACM/IEEE/SCS
Workshop on Principles of Advanced and Distributed Simulation (PADS 2005),
pages 282-291, Monterey, CA, USA, June 2005.

Yi Zhang, Georgios Theodoropoulos, Rob Minson, Stephen Turner, Wentong Cai,
Yong Xie, and Brian Logan. Grid-aware large scale distributed simulation of
agent-based systems. In Proceedings of the 2005 European Simulation Interop-
erability Workshop, Toulouse, June 2005. Simulation Interoperability Standards
Organisation, [IEEE/ITCMS. 05E-SIW-047.

Wenbo Zong, Yong Wang, Wentong Cai, and Stephen J. Turner. Grid services
and service discovery for HLA-based distributed simulation. In Proceedings of
the Eighth IEEE International Symposium on Distributed Simulation and Real-
Time Applications (DS-RT’04), pages 116—124, Washington, DC, USA, 2004.
IEEE Computer Society.

18

