
Decision-Theoretic Throttling for Optimisitc Simulations of Multi-Agent Systems

Michael Lees, Brian Logan,
School of Computer Science and Information Technology

University of Nottingham, UK
{mhl,bsl}@cs.nott.ac.uk

Chen Dan, Ton Oguara and Georgios Theodoropoulos
School of Computer Science

University of Birmingham, UK
{cxd,txo,gkt}@cs.bham.ac.uk

Abstract

In this paper we present a throttling mechanism for op-
timistic simulations of multi-agent systems, which delays
read accesses to the shared simulation state that are likely
to be rolled back. We develop a decision- theoretic model of
rollback and show how this can be used to derive the opti-
mal time to delay a read event so as to minimise the expected
overall execution time of the simulation. We briefly describe
an implementation of this approach in ASSK, a distributed
simulation kernel developed to investigate synchronisation
mechanisms for MAS simulation, and report the results of
preliminary experiments to evaluate the effectiveness of our
approach.

1. Introduction

Simulation has traditionally played an important role in
multi-agent system (MAS) research and development. It al-
lows a degree of control over experimental conditions and
facilitates the replication of results in a way that is difficult
or impossible with a prototype or fielded system, freeing
the agent designer or researcher to focus on key aspects of
a system. As researchers have attempted to simulate larger
and more complex MAS, distributed approaches to simu-
lation have become more attractive [2, 16, 8]. Such ap-
proaches simplify the integration of heterogeneous agent
simulators and exploit the natural parallelism of a MAS,
allowing simulation components to be distributed so as to
make best use of the available computational resources.
However the efficient simulation of multi-agent systems
presents particular challenges for parallel discrete event
simulation (PDES) models and techniques [6, 7].

In previous work [9, 13] we presented PDES-MAS, a de-
sign for an optimistic PDES kernel for the simulation of
multi-agent systems. In the PDES-MAS framework LPs
are divided into two categories, Agent Logical Processes
(ALPs) and Communication Logical Processes (CLPs). A
simulation is made up of at least one ALP and at least one
CLP. The ALPs contain the actual models of the agents and
their environment. The CLPs are responsible for maintain-
ing the shared state of simulation, with each CLP managing
some subset of the shared state.

A defining characteristic of agents is their autonomy.
The actions performed by an agent are not solely a func-
tion of events in its environment: in the absence of input
events, an agent can still produce output events in response
to autonomous processes within the agent. As a result,
agent simulations have zero lookahead [17]. The PDES-
MAS framework therefore utilises an optimistic synchroni-
sation strategy. However unconstrained optimism can re-
sult in excessive rollback [12]. One approach to reducing
rollback is throttling, or bounded optimism, in which LPs
are prohibited from processing events which are likely to be
rolled back.

In PDES-MAS, agents interact with the CLPs by reading
and writing state variables. In [10, 11], we showed that roll-
backs result from a particular pattern of access to the shared
state, in which a CLP receives a late or straggler write with
timestamp tw from an ALP LPi to a particular state vari-
able which has previously been read with timestamp tr by
some ALP LPj , such that tw < tr and LPi �= LPj . In
this paper we present a throttling mechanism for the PDES-
MAS framework, which delays read accesses to the shared
state which are likely to be rolled back. We develop a de-
cision theoretic model of rollback in PDES-MAS and show
how this can be used to derive a optimal time to delay a read

1

event which minimises the expected overall execution time
of the simulation. We briefly describe an implementation
of this approach in ASSK, a distributed simulation kernel
based on the PDES-MAS framework, and report the results
of preliminary experiments to evaluate the effectiveness of
our approach.

The remainder of the paper is organised as follows. In
section 2 we present the decision theoretic throttling model
and show how it can be used to compute an optimal delay
time for a read access. In sections 3 and 4 we expand on the
assumption underlying the model and briefly outline how
the probabilities and utilities required by the decision theo-
retic model are calculated. In section 5 we outline how the
model is implemented by a CLP, and in section 6 we present
results from a number of simple agent simulations which il-
lustrate the effectiveness of our approach. In section 7 we
discuss related work and in 8 we conclude and outline plans
for future work.

2. Decision-Theoretic Throttling

In conventional optimistic PDES, rollback has generally
been considered in terms of late or straggler messages. This
seems intuitive given the overall goal, which is to make the
simulation execute as fast as possible. However we can also
say that rollbacks result from processing an event prema-
turely. We say an event e with time stamp te is premature if
another event e′ with timestamp te′ < te will arrive after e
in real time.

Throttling is a means of increasing the performance of
optimistic PDES, where performance is taken as the elapsed
time required to complete the simulation. The performance
increase obtained through using throttling rests upon two
assumptions. Firstly, the probability of rollback increases
as events are processed further from the global virtual time.
Secondly, that the overall performance of the simulation is
increased by reducing rollback.1 The second assumption re-
stated becomes: the real time cost of blocking at an event
until the window advances is less than the real time cost of
processing the event plus the cost of any subsequent roll-
back.

We can reformulate the intuition underlying throttling
in decision theoretic terms, where the total elapsed time is
viewed as a cost to be minimised. A decision to process an
event at a particular point in real time will result in one of
a number of different outcomes, each of which has an as-
sociated probability and cost (in terms of elapsed time). In
the PDES-MAS framework the relevant decisions are when
to process read events received by a CLP. We assume that

1In cases where the execution time of the simulation is bounded by a
consistently slower agent which is never rolled back, the time required for
the simulation to complete may not be affected by rolling back the faster
agents.

agents execute a sense–think–act cycle, in which they ob-
tain information from the environment (shared state) and
compute an action which changes the environment. Sens-
ing gives rise to read events, and acting gives rise to write
events. Write events can always be processed immediately.
A write event by an ALP, ALPi with a time stamp tw
can only be rolled back if a read by ALPi with timestamp
tr < tw is rolled back. An ALP which only writes and never
reads is not influenced by the other ALPs and can never be
rolled back. We can also safely process a read event with
timestamp tr on a shared state variable v if tr is lower than
the LVT of all ALPs other than the one which generated the
read, e.g., if all other ALPs have written v with a timestamp
greater than tr. For all other read events, a CLP should de-
lay processing a read if it is likely that the read is premature,
i.e., if there is reason to believe that the read is likely to be
rolled back by a straggler write.

We assume that the possible delay times are chosen from
a finite set of delay times {0, 1, 2, . . .}. A CLP can therefore
take one of a number of actions: delay for 0; delay for 1; de-
lay for 2; where “delay for 0” means “process this event
immediately”. Each action has an associated cost, namely
the amount of real time the read is delayed and hence ALP
which generated the read must spend blocked waiting for
the value returned by the read. If we prefer actions with
lower cost, we would therefore always choose the “delay
for 0” action which has zero cost. However, for each ac-
tion we may have to pay an additional “rollback cost”—the
real time spent rolling back if the read subsequently turns
out to have been premature. We assume that the probability
of paying this rollback cost is lower for some actions than
others, i.e., the longer we delay, the lower the probability
of a straggler write and hence of paying the rollback cost.
Given two reads events, r1 and r2 with timestamps tr1 and
tr2 such that tr1 ≤ tr2, a straggler write which rolls back r1

will also roll back r2 (if this has been committed). However
we may decide to process r1 if we consider a straggler write
with a timestamp tw < tr1 unlikely, and delay processing
r2 if a straggler write with timestamp < tr2 is more likely.
Note that it never makes sense to delay for longer than the
rollback cost. All actions therefore result in the event being
processed (since we never delay for an infinite time).

This gives us a simple trade-off: delaying for less time
costs less (in real time) but has a higher likelihood of in-
curring a rollback cost. If we know the probability of a
rollback occurring for each action (delay time) we can for-
mulate this in decision theoretic terms, and can compute the
action which maximises expected utility (i.e., minimises ex-
pected costs in this case).

For simplicity, we assume each action can result in two
distinct outcomes: one in which no straggler event arrives
after the (real) time now +d, where d is the delay time, and

2

one in which a straggler event does arrive after now + d.2

Given the utilities of these two states (in terms of their real
time cost), the expected utility, EU of each action, Aj given
evidence E is:

EU(Aj |E) =
∑

i

P (Resulti(Aj)|E) × U(Resulti(Aj))

where P (Resulti(Aj)|E) is probability of the i’th pos-
sible outcome of action Aj given evidence E and
U(Resulti(Aj)) is the utility of this outcome. For each
action j (delay time) there are two possible outcomes, giv-
ing:

EU(Aj |E) =
P (NoStraggler|E) × U(NoStraggler) +
P (Straggler|E) × U(Straggler)

P (NoStraggler|E) is the probability that no straggler
write will arrive after time now+j, where E is the evidence
(history of writes to the variable v). U(NoStraggler) is
simply the delay time for action Aj , i.e., j. U(Straggler)
is the sum of the delay time for action Aj plus the rollback
cost c, i.e., j + c. The optimum action is the one with the
lowest expected cost.

Note that this optimum action is valid only for a specific
point in real time. As real time (and the LVT of the ALPs)
advances, the probability of encountering a straggler write
for the current read event declines. So if we repeat the cal-
culation after, say, one second, of real time, the optimum
action will be different, typically to delay for less time or to
delay for 0. Whether it is worth recalculating the optimum
delay times periodically (as opposed to simply computing
the delay once and processing the delayed event when the
delay has elapsed) depends on whether we can get better
probability estimates with time. For example, if it somehow
becomes clear that a “slow” LP has speeded up or stopped
writing to a variable, this will change the probability of roll-
back for reads of the variable.

3. Estimating the Probability of a Straggler
Write

Given a read event of a variable v with timestamp tr and
a real time delay, j, the next write to a variable v is a strag-
gler if two conditions are satisfied. Firstly, the write must
arrive after now + j. We call this the real-time condition.
Secondly the timestamp of the write, tw, must be less than
the time stamp of the read tr and greater than or equal to
tv, the timestamp of the write immediately preceding tr

2Strictly, this should be “in which at least one straggler write arrives
after now + d”. In this paper, we consider the case in which there is only
one straggler.

in virtual time, i.e., tv ≤ tw < tr. We assume reads al-
ways occur “before” writes with the same timestamp, so a
straggler write must have a timestamp which is strictly less
than a read to trigger a rollback. This is called the virtual-
time condition. We could reformulate the virtual time con-
dition so that a write with a timestamp at any point before
the timestamp of the read is viewed as a straggler, rather
than only timestamps between tv and tr. While only writes
with timestamps between tv and tr are guaranteed to cause a
rollback, writes with timestamps less than tv may indirectly
trigger a rollback, by invalidating a prior read. However,
for simplicity, we ignore this case. Figure 1 illustrates the
values for real times and virtual times which will result in a
rollback.

tv tr

�����
�����
�����
�����

�����
�����
�����
�����r

vr

r

Virtual Time

R
ea

l T
im

e

Figure 1. Real and virtual time conditions for
rollback

We model the real and virtual time conditions as two
probability distributions: Pa, the (real) arrival time of the
next write event, and its timestamp, Pt. We are only in-
terested in the arrival times of writes with timestamps less
than that of the read we are processing. However, for sim-
plicity, we assume that the two distributions, Pa and Pt,
are independent, since the writes may originate from ALPs
with differing LVTs, and although in general timestamps in-
crease with increasing arrival times, this is not guaranteed,
e.g., if one or more ALPs rolls back.

Pa and Pt can be computed from the arrival time and
timestamp of the most recent write to the state variable v
and the history of previous writes to v. We assume that ∆a,
the difference between the real arrival times of successive
writes to v, is a Poisson process which can be modelled
using an exponential distribution. If the real arrival time of
the most recent write to v is al, then the probability that the
next write will arrive after a delay of j is the probability that
∆a is greater than now + j − al.

The probability that an exponentially distributed variate

3

with arrival rate λ = 1
µa

assumes a value in the interval
[0, z] is given by the exponential cumulative distribution
function,

F (z) = 1 − e−λx

where µa is the mean real inter arrival time. Note that care
must be taken when computing µa. If an agent both reads
and writes a variable, then delaying a read will increase the
real arrival time of subsequent writes and hence the mean
real inter-arrival time for the variable. This can result in
positive feedback, with delays leading to higher mean inter-
arrival times and hence longer delays, since the probability
of a straggler write increases as the mean real inter-arrival
time increases. We therefore compute a mean real inter-
arrival time for each ALP which takes into account only
writes from other ALPs.

For Pt, we assume that ∆t, the difference between the
timestamps of successive writes to v is normally distributed.
If tl is the timestamp of the write to v with arrival time al,
(i.e., the most recent write to v), then the probability that
the next write will have a timestamp in the interval [tv, tr)
is the probability that ∆t is in the interval [tv − tl, tr − tl).
Note that tr can be greater than tl, e.g., tv = tl, in which
case the interval becomes [0, tr − tl). For example, given a
read with a timestamp of t20 and a sequence of writes with
timestamps: t10, t15, t17, t30 where t30 is the timestamp of
the most recent write, we compute the probability that the
next write to arrive will have a timestamp difference in the
interval [−13,−10).

The probability that a standard normal variate assumes a
value in the range [z1, z2] is given by

Φ(z1, z2) =
1
2

[
erf

(
z2√
2

)
− erf

(
z1√
2

)]

Neither the normal distribution function Φ or erf exists
in simple closed form and must be computed numerically.
There are however many numerical approximations to the
cumulative normal function [1]. These approximations can
achieve greater accuracy then numerical integration tech-
niques such as trapezoidal or Simpson’s rule.

The probability of a straggler write is therefore

P (Straggler|E) =

1 − e−λx × Φt

(
(tv − tl) − µt

σt
,
(tr − tl − 1) − µt

σt

)

where Φt is the normal distribution function for Pt, and µt

and σt are the mean and standard deviation of the difference
between the timestamps of successive writes.3

The probability of no straggler is simply

P (NoStraggler|E) = 1 − P (Straggler|E)
3If the standard deviation of difference between successive timestamps,

σt, is close to zero, we assume stationarity, i.e., that the timestamp of the
next write will be tl + µt.

We can therefore compute the probabilities of each of the
outcomes for a given delay time, j, and hence the opti-
mum delay action. If too few events have been sent by an
ALP to determine the mean and standard deviation (e.g., on
startup), we return a delay time of 0.

4. Estimating the Cost of Rollback

Estimating the cost of rollback is hard, due to the diffi-
culty of determining the likelihood of ALPs other than that
which generated the read event being rolled back if the read
event is processed. We therefore only consider the cost of
rolling back the ALP which generated the read, accepting
that this may be an underestimate of the true rollback cost.

The rollback cost consists of two separate components:
the cost of rolling back the ALP to the timestamp of the
straggler (the undo cost) plus the cost of the ALP repeating
undone computation.4 For simplicity, we assume that the
ALP’s undo cost, u, is constant. In reality, u is dependent on
the type of state saving used in the system, e.g., incremental
or periodic.

To calculate the cost of replaying rolled back events by
the ALP we assume a worst case straggler with timestamp
equal to tv, and compute the real time required for the ALP
to advance from tv to tr. This is estimated from rate of
LVT progression, δLV T , of the ALP which initiated the
read, i.e., the real time required for the ALP to advance one
unit of virtual time. δLV T is computed by the CLP for
each ALP, and is assumed to be simply the timestamp of
the last event received from the ALP (which we assume to
be tr) divided by the elapsed time since the start of the sim-
ulation. The replay cost also includes any processing done
by the ALP between the end of the delay period and before
the arrival of the straggler write. We assume this additional
replay cost to be equal to max(al + µa − j, 0), i.e., the ex-
pected arrival time of the straggler write al + µa less the
delay time, j, if this is positive.

The total rollback cost is therefore:

r = u + ((tr − tv) × δLV T) + max(al + µa − j, 0)

5. Implementation

We have implemented the approach outlined above
within ASSK [11], a distributed simulation kernel based
on the PDES-MAS framework developed to investigate syn-
chronisation mechanisms for MAS simulation. ASSK is
a library of C++ classes which use MPI for inter-process

4We assume that the CLP’s undo cost is marginal, i.e., the cost of un-
doing the current read. Similarly, we assume that the cost of the ALP
replaying the events is significantly greater than the cost of processing the
replayed events by the CLP, and ignore the latter in computing the rollback
cost.

4

communication. ASSK does not interface directly with a
MAS simulator, rather it takes as input event traces from
a MAS simulation. An ASSK simulation consists of one
or more agent ALPs and a single shared state LP (SSLP)
which maintains the shared state of the simulation. Each
ALP processes an event trace from an agent in the orig-
inal agent simulation and asynchronously sends read and
write events from the trace to the shared state LP. Upon re-
ceiving an event the SSLP applies the appropriate access
to the relevant state variable and generates any necessary
responses. If the SSLP receives a straggler write from an
ALP, it rolls back the state variable to the timestamp of the
write, and triggers rollbacks on all the ALPs which read in-
correct value(s) of the variable. This causes the ALPs to de-
lay for a time (representing the undo cost) and then rewind
and replay their event traces from the time of the rollback.
Although deterministic in that the events generated by the
ALPs are entirely determined by the input traces, ASSK pro-
vides a flexible framework for synchronisation experiments.

With decision-theoretic throttling turned on, the SSLP
checks all incoming reads and computes the expected util-
ities for 20 delay times, evenly distributed between 0 and
three times the mean inter-arrival time, µa. If the delay time
greater than zero has lowest cost, the SSLP places the read
and the selected delay time in the delay queue. When the
delay time has elapsed, the read is dequeued and processed
as normal.

6. Results

To investigate the effectiveness of decision-theoretic
throttling, we performed a number of experiments in which
we compared the performance of unconstrained optimism
(i.e., no throttling) and the decision theoretic algorithm out-
lined above. The performance measures collected included
the total elapsed time, the number of rollbacks, and, in the
decision theoretic case, the total delay time.

The experiments used a synthetic event trace, in which
two agents access a single shared state variable. Each
agent executes a sense–think–act cycle, with read and write
events corresponding to the sensing and acting phases of
the agent’s cycle. At each cycle, agent 1 reads the vari-
able, and agent 2 both reads and writes the variable. Al-
though the scenario is simplified, this pattern of variable
accesses is representative of the kinds of interactions found
in highly coupled agent simulations, where agents interact
via the shared state. For example, in flocking or predator
and prey simulations in which one agent can sense another,
but the second agent cannot sense the first [15].

We investigated the effect of varying the real and vir-
tual time required by the agents to complete a single sense–
think–act cycle. The real cycle time of the agents was mod-
elled as an exponential distribution. For agent 1, the mean

cycle times were taken to be 80, 160 and 240 milliseconds.
In each case, agent 2 has a mean cycle time which is twice
that of agent 1, i.e., the mean cycle times for agent 2 were
taken to be 160, 320 and 480 milliseconds. For the virtual
cycle time, we used a normal distribution with mean 15 and
standard deviation 4 for both agents. To investigate the ef-
fect of differing rollback costs, we also varied the undo cost
from 20 milliseconds to 300 milliseconds.

The experiments were performed on a homogeneous
mini-cluster consisting of four nodes (Pentium IV 3.1 GHz,
1GB RAM) running Redhat 7.2 connected via gigabit Eth-
ernet. The results presented below represent an average of
5 runs of 100 agent cycles.

 15

 20

 25

 30

 35

 40

 45

 50

 0 50000 100000 150000 200000 250000 300000

N
um

be
r

of
 r

ol
lb

ac
ks

Undo cost (microseconds)

80milisecond cycle
160milisecond cycle
240milisecond cycle

Figure 2. Number of rollbacks (uncon-
strained)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000 200000 250000 300000

N
um

be
r

of
 r

ol
lb

ac
ks

Undo cost (microseconds)

80milisecond cycle
160milisecond cycle
240milisecond cycle

Figure 3. Number of rollbacks (decision theo-
retic)

Figure 2 shows the number of rollbacks for the uncon-
strained (purely optimistic) case for each undo cost. As can

5

be seen, as the undo cost of rollback increases, the number
of rollbacks declines, as it takes longer (in real time) for
agent 1’s LVT to become greater than that of agent 2 fol-
lowing a rollback, so reducing the number of occasions on
which agent 1 can be rolled back. Figure 3 shows the cor-
responding number of rollbacks for the decision theoretic
case. As can be seen, for all mean cycle times, the number
of rollbacks is lower than in the unconstrained case. For
example, in the case in which agent 1 has a cycle time of
80 milliseconds, there are 31 rollbacks when the undo cost
is 20 milliseconds (compared with 44 in the unconstrained
case), dropping to 2 rollbacks with an undo cost of 300 mil-
liseconds (compared to 17 in the unconstrained case).

 20

 30

 40

 50

 60

 70

 80

 90

 0 50000 100000 150000 200000 250000 300000

P
er

ce
nt

ag
e

of
 r

ol
lb

ac
k

re
du

ct
io

n

Undo cost (microseconds)

80milisecond cycle
160milisecond cycle
240milisecond cycle

Figure 4. Reduction in rollback

The difference between the two cases can be seen more
clearly in Figure 4, which shows the percentage reduction
in rollbacks when using the decision theoretic algorithm
compared to purely optimistic synchronisation. As can be
seen, for each mean real cycle time investigated, the deci-
sion theoretic algorithm reduces the number of rollbacks by
between 25% and 85%. As the undo cost increases, the al-
gorithm prevents more rollbacks. This effect is most pro-
nounced with a mean cycle time of 80 milliseconds and
undo costs greater than 100 milliseconds, as in these cases
the cost of delaying a read by agent 1 until the straggler
write produced by agent 2 arrives is small relative to the
cost of a rollback. With larger mean cycle times, the algo-
rithm allows more rollback to occur as the delay required to
prevent a rollback is larger in relation to the rollback cost.

Figure 5 shows the reduction in computation time
(elapsed time − delay time) for the simulation when us-
ing the decision theoretic algorithm. As can be seen, the
reduction in computation time correlates closely with the
reduction in rollback shown in Figure 4.

This is more or less what we would expect: the algo-
rithm converts rollbacks (and rollback time) into delay time,
injecting sufficient delays to ensure that agent 1 does not ad-

 4

 6

 8

 10

 12

 14

 16

 18

 0 50000 100000 150000 200000 250000 300000

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e
re

du
ct

io
n

Undo cost (microseconds)

80milisecond cycle
160milisecond cycle
240milisecond cycle

Figure 5. Reduction in computation time

vance LVT at a faster rate than agent 2. However while roll-
back time is essentially ‘wasted’ CPU, delay time is time
that the ALP spends blocked in a read. This time can be
used by other processes (e.g., other ALPs or processes) or
to facilitate load balancing within the simulation.

7. Related Work

A number of probabilistic approaches to throttling have
been described in the literature. Below we summarise some
of this work and briefly indicate its relationship to the ap-
proach presented in this paper.

Ferscha and Chiola [4] have proposed a probabilistic
protocol which uses timestamps to estimate how likely a
particular message arrival is to cause a rollback. Before
sending each message the probability of rollback for this
event is determined using information about previous ar-
rivals. The time window of the sending LP is then adapted
in relation to the previously observed arrivals at the LP. Dif-
ferent methods were used for characterising the arrival pro-
cess, including average token time increment, linear regres-
sion and both normal and exponential distributions. The
protocol is similar to the Moving Time Windows protocol
[12] except LPs are not required to block when they reach
the end of their window. Instead, when the end of the win-
dow is reached, the probability of an event triggering a roll-
back is considered, and, if the event is likely to cause roll-
back, it is blocked. This has the effect of slowing down
an LP after it leaves the window, with the rate at which it
slows being determined by the confidence estimate. The
Ferscha and Chiola protocol differs from the approach pre-
sented here in a number of respects. Firstly the probabilistic
blocking is done on the sender side rather than the receiver
side. Secondly only virtual time is considered when deter-
mining rollback probability. Finally the scheme does not
use a decision theoretic model to determine an optimal de-

6

gree of constraint.

In [5] Ferscha and Luthi present a similar technique
based on CPU delay intervals. The optimal delay interval
is determined by a probabilistic cost expectation function
(PCEF). This involves each LP monitoring the rate of LVT
progression per unit of CPU time. Each message has two
timestamps: the first corresponding to the virtual time of the
event and the second corresponding to the real time at which
the message was received. These timestamps are used by a
probabilistic decision function which determines the opti-
mal trade off between loss of CPU cycles due to blocking
and wasted CPU time due to rollbacks. The probability of
rollback is assumed to be r

e , where e is the total number of
events and r is the total number of rollbacks, and the cost
of a rollback is taken to be the average (real) rollback time,
including the time required to replay events. This approach
was tested using a simulation of stochastic petri nets and
was shown to outperform standard Time Warp. The authors
state the approach will perform best in simulation models
with a high degree of imbalance in LVT progression. There
are a number of similarities between this work and our own.
It uses a decision theoretic model and both real and virtual
time are used in determining rollback probability. However,
unlike the work presented in this paper rollback probability
is not determined by assuming underlying distributions for
virtual and real time arrivals.

In the Probabilistic Adaptive Direct Optimism Control
(PADOC) protocol [3], the timestamps of previous mes-
sages are used to predict the timestamp of the next message.
The number of previous messages used in this prediction
can be changed to suit the simulation: using more messages
gives a more accurate prediction but also incurs greater
overhead. A number of different forecasting methods are
investigated in the paper, including three “straightforward”
methods: arithmetic mean, exponential smoothing and me-
dian approximation, and a more complex method, inte-
grated autoregressive moving average (ARIMA). The re-
sults show the ARIMA method outperforms all the straight-
forward cases and standard Time Warp. This work is the
most similar to the work presented here. It does however
differ in the method used for determining rollback probabil-
ity and doesn’t make a distinction between read and write
events.

Another cost model similar to [5] was proposed by Mas-
carenhas et al in [14]. The Minimum Average Cost (MAC)
algorithm is based on minimising the cost of synchronisa-
tion delay and rollback overhead, as in [5]. Using the prob-
ability of rollback, they determine if it is better to wait on
an empty input channel which may later receive a strag-
gler message. Unlike the work presented here, the MAC
approach assumes that the real inter arrival time and times-
tamp of events are stationary sequences. Based on this as-
sumption, the probability that the next event on a channel

will arrive after a given amount of real time and turn out
to be a straggler is calculated. The model was tested on
three examples of closed queueing systems and was shown
to reduce rollback costs by about 25% on average compared
to standard Time Warp. However, in some cases the over-
head of the adaptive mechanism became so great that any
improvement gained was lost through overheads.

In previous work [11], we presented another approach
to throttling based on critical accesses. The set of critical
accesses between two logical processes pi and pj is defined
as:

CAij = |sR(pi) ∩ sW (pj)| + |sW (pi) ∩ sR(pj)|

where sR(pi) and sW (pi) are the set of reads and writes
made by pi. Reads by an ALPs which share a large num-
ber of critical accesses with other ALPs and which have a
large difference in LVT are assumed to be more likely to
be rolled back and are delayed at the sending ALP. This
has the advantage that the degree of optimism can be ad-
justed to reflect the degree of overlap of the ALP’s spheres
of influence and their rate of LVT progression. However
this approach requires knowledge of the number of critical
accesses shared with other ALPs and their LVTs. In the
PDES-MAS framework, this information is distributed over
the CLPs and ALPs respectively. In contrast, the approach
presented in this paper is less discriminating than the critical
access approach but requires less information.

8. Discussion and Further Work

In this paper we have presented an adaptive throttling
mechanism which uses a decision theoretic model to choose
an optimal delay time for read events which are likely to
be premature. We outlined the assumptions on which our
model is based and briefly described a prototype implemen-
tation of the decision theoretic model in the ASSK simula-
tion kernel. The key contributions of this work are:

1. the use of decision theoretic approach to choose the
optimal delay times

2. both virtual and real time components of rollback are
considered;

3. delays are computed at the receiving LP and informa-
tion used by the algorithm is available locally, reducing
the overhead of data collection;

4. the algorithm exploits the potential for Read/Write op-
timisation within the PDES-MAS framework;

While previous work has addressed some of these aspects,
to the best of our knowledge, the combination of features
adopted here is novel.

7

To investigate the effectiveness of our approach, we con-
ducted a number of experiments using synthetic event traces
from simulations of simple multi-agent systems. While
preliminary, the results show how the performance of our
approach compares to the purely optimistic (unconstrained
optimism) case and how the model’s behaviour adapts with
differing real time costs for rollback. For the simple cases
studied, the results are encouraging, showing a five to ten-
fold reduction in the number of rollbacks (and time spent
rolling back) compared to the unconstrained case.

The results presented in this paper demonstrate ‘proof
of concept’, and indicate the feasibility of applying deci-
sion theoretic throttling to simulations of multi-agent sys-
tems. We are currently testing the throttling mechanism
using event traces which characterise more complex pat-
terns of agent interaction and with event distributions which
deviate from the normal and exponential distributions as-
sumed by the algorithm, to establish the sensitivity of the
algorithm to the underlying statistical properties of the sim-
ulation. In addition, we are evaluating its effectiveness in
cases where there are many interacting agents, using event
traces from a number of different agent simulations, includ-
ing SIM TILEWORLD and SIM BOIDS.

In future work, we plan to investigate extending our ap-
proach to include the possibility of more than one straggler,
relaxing the virtual time condition to include any straggler
write with a timestamp less than tr, and utilising alternative
methods estimating rollback cost. We also hope to inves-
tigate applying the approach to other simulation problems
with a large shared state, e.g., mobile networks.

Acknowledgements

This work is part of the PDES-MAS project5 and
was partially supported by EPSRC research grants Nos.
GR/R45338/01, GR/S82862/01 and EP/C549406/1.

References

[1] M. Abramowiz and I. A. Stegun. Handbook of Mathematical
Functions. National Bureau of Standards, 1964.

[2] J. Anderson. A generic distributed simulation system for in-
telligent agent design and evaluation. In Proceedings of AI,
Simulation and Planning In High Autonomy Systems, 2000.

[3] A. Ferscha. Probabilistic adaptive direct optimism control
in time warp. In Proceedings of the 9th Workshop on Paral-
lel and Distributed Simulation (PADS ’95), pages 120–129,
1995.

[4] A. Ferscha and G. Chiola. Self-adaptive logical processes:
the probabilistic distributed simulation protocol. In Proceed-
ings of 27 th Annual Simulation Symposium. IEEE Computer
Society Press, 1994.

5http://www.cs.bham.ac.uk/research/pdesmas

[5] A. Ferscha and J. Luthi. Estimating rollback overhead for
optimism control in time warp. In Proceedings of 28 th An-
nual Simulation Symposium, 1995.

[6] A. Ferscha and S. K. Tripathi. Parallel and distributed
simulation of discrete event systems. Technical Report
CS.TR.3336, University of Maryland, 1994.

[7] R. Fujimoto. Parallel discrete event simulation. Communi-
cations of the ACM, 33(10):31–53, October 1990.

[8] L. Gasser and K. Kakugawa. Mace3j: Fast flexible dis-
tributed simulation of large, large-grain multi-agent systems.
In Proceedings of AAMAS-2002, Bologna, July 2002.

[9] M. Lees, B. Logan, R. Minson, T. Oguara, and G. Theodor-
opoulos. Distributed simulation of MAS. In In Proceed-
ings of the Joint Workshop on Multi-Agent and Multi-Agent-
Based Simulation, pages 21–30, 2004. (to appear).

[10] M. Lees, B. Logan, and G. Theodoropoulos. Adaptive opti-
mistic synchronisation for multi-agent simulation. In D. Al-
Dabass, editor, Proceedings of the 17th European Simula-
tion Multiconference (ESM 2003), pages 77–82, Delft, 2003.
Society for Modelling and Simulation International and Ar-
beitsgemeinschaft Simulation, Society for Modelling and
Simulation International.

[11] M. Lees, B. Logan, and G. Theodoropoulos. Time windows
in multi-agent distributed simulation. In Proceedings of the
5th EUROSIM Congress on Modelling and Simulation (Eu-
roSim’04), Paris, September 2004. (to appear).

[12] A. W. L.M. Sokol, D.P. Briscoe. Mtw: A strategy for
scheduling discrete simulation events for concurrent execu-
tion. In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, pages 34–42, San Diego, California,
February 1988.

[13] B. Logan and G. Theodoropoulos. The distributed simula-
tion of multi-agent systems. In Proceedings of the IEEE,
pages 174–185, 2001.

[14] E. Mascarenhas, F. Knop, R. Pasquini, and V. Rego. Min-
imum cost adaptive synchronization: experiments with
the parasol system. Modeling and Computer Simulation,
8(4):401–430, 1998.

[15] C. W. Reynolds. Flocks, herds and schools: A distributed
behavioral model. In Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques,
pages 25–34. ACM Press, 1987.

[16] B. Schattenberg and A. Uhrmacher. Planning agents in
james. In Proceedings of IEEE, 2000.

[17] A. Uhrmacher and K. Gugler. Distributed, parallel simula-
tion of multiple, deliberative agents. In Proceedings of Par-
allel and Distributed Simulation Conference (PADS’2000),
pages 101–110, May 2000.

8

