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Abstract

We describe GRUE, an architecture for game agents. GRUE
facilitates the development of flexible agents capable of bal-
ancing competing goals and responding appropriately to their
environment. We briefly describe GRUE’s representation of
the agent’s environment and sketch the algorithm used to se-
lect between competing goals. We present some preliminary
results from an evaluation of GRUE in a Tileworld environ-
ment which suggest that the features of GRUE are useful in
dynamic environments. We conclude with a brief description
of future work.

Introduction

Modern computer games provide dynamic, compelling sim-
ulated worlds. However, the characters in these games of-
ten exhibit formulaic, unrealistic behaviour. As game de-
velopers try to draw in new audiences and tell more sophis-
ticated stories, they will require characters capable of han-
dling complex situations in believable ways.

We believe that developing believable characters for
games is easier using a general architecture capable of
supporting flexible goal prioritisation (see, e.g., (O’Brien
2002)). A key problem with goal-based architectures is goal
arbitration, i.e., deciding which goal or goals to work on
next. For example, a bot in a first person shooter game
may have a goal to defend a teammate under attack (trig-
gered by a request from the teammate), a goal to maintain
its health level (innate), and a goal to obtain a better weapon
(autonomously generated). Ideally the agent should work
to achieve as many goals as possible, while respecting any
priority ordering over goals and the limitations imposed by
its environment and the actions it can perform. The agent
should be able to respond to opportunities and threats as they
arise, while continuing to work towards its existing goals (to
the extent to which this is possible). However, many existing
goal-based agent architectures only allow an agent to work
towards a single goal at a time.

In this paper we give a brief overview of GRUE (Gor-
don & Logan 2004), an architecture for game agents which
are capable of balancing competing goals while responding
appropriately to their environment. Building on the teleo-
reactive programming framework originally developed in
robotics, we introduce the notion of a resource which rep-
resents a condition which must be true for the safe concur-

rent execution of a durative action. Resources provide a rich
representational framework for the kinds of objects that typi-
cally occur in game worlds, including time, information, and
continuous quantities such as money, magic power, ammu-
nition etc. They allow the game developer to specify which
game objects are required to achieve a given goal, which ob-
jects are preferred for a goal, and whether game objects can
be shared between competing goals. By varying these speci-
fications, the developer can add personality to game charac-
ters. We briefly outline the GRUE architecture, and describe
a goal arbitration algorithm for teleo-reactive programs with
resources which allows a GRUE agent to respond flexibly to
multiple competing goals with conflicting resource require-
ments.

The remainder of this paper is organised as follows. In
the next two sections we give a brief description of the teleo-
reactive programming framework and highlight some of the
problems with implementing goal based game agents. We
then introduce the notion of a resource and give an overview
of the GRUE architecture before going on to present some
preliminary results from an evaluation of GRUE in Tile-
world (Pollack & Ringuette 1990). Finally, we briefly dis-
cuss some related work, and present our conclusions.

Taking Inspiration from Robotics

Our approach is based on teleo-reactive programs (TRPs) as
described in (Benson & Nilsson 1995), which were devel-
oped for controlling robots. Each TRP brings about a par-
ticular goal, which we refer to as the success condition of
the TRP. TRPs consist of a series of rules, each of which
consists of some number of conditions and actions. The
rules are ordered: rules later in the order have actions that
tend to bring about the conditions of rules earlier in the or-
der. The first rule matches the success condition and has a
null action. A TRP is run by evaluating the conditions of
the rules in order and executing the actions of the first rule
whose conditions evaluate to true when matched against a
world model stored in the agent’s memory. The actions can
be durative, in which case the action continues as long as
its condition is true. Our agents use TRPs as pre-written
plans for achieving goals. As in (Benson & Nilsson 1995;
Benson 1996), multiple plans (programs) can be executed
simultaneously by an arbitrator. However, our system uses
a novel goal arbitration algorithm (described below) rather



than that described in (Benson & Nilsson 1995).

The teleo-reactive architecture described by Benson and
Nilsson is not completely autonomous. Goals are proposed
by a human user who is also responsible for determining the
reward for achieving a goal. During each execution cycle,
the arbitrator runs the program with the best reward/time ra-
tio. The reward is the expected reward for achieving the
goal (which may or may not actually be received) and the
time is the estimated time necessary to reach a point where
the program can safely be stopped. This allows the agent to
take small amounts of time to achieve less rewarding goals
while it is also working on a more time-consuming but more
rewarding goal.

Game Agents

Requiring a human user to provide goals is reasonable in
some situations, but impractical in most computer games. A
common approach in computer games is to create an agent
with a fixed set of goals, the priorities of which are set by
the programmer and do not change.

We used this approach to build a simple teleo-reactive
agent which tries to achieve a set goals specified by the
programmer. Programmer-specified priorities replaced re-
ward/time ratios and the Benson & Nilsson goal arbitration
algorithm was not used. The agent plays ‘Capture the Flag’,
one of the game types provided by Unreal Tournament. Un-
real Tournament (UT) is a ‘first person shooter’ game in
which players compete in a map or level to achieve specific
game objectives. In Capture the Flag, each player has a flag
and can gain points by stealing their opponent’s flag. The
game is combat based, with players using weapons to attack
each other. Our agent uses a basic strategy of always guard-
ing its own flag. It has goals for regaining health, attack-
ing an opponent, and returning to its flag. Each goal has a
corresponding teleo-reactive program, but only one program
can run during each execution cycle. The goal for regain-
ing health has the highest priority, which means that if the
agent’s health is low, only the program for regaining health
will run. The problem is that once a health pack has been
used it takes some time for another one to appear. While
the agent is pursuing the ‘regain health’ goal (waiting for
a health pack to appear), it ignores approaching opponents.
This is not effective or realistic behaviour. While it is possi-
ble to modify the TRPs or adjust the goal priorities to avoid
this particular problem, most fixed goal orderings will have
similar types of problems. A more general solution is to al-
low the agent to towards multiple goals simultaneously, giv-
ing greatest priority to those goals which are most important
in the current situation.

We have therefore developed a new teleo-reactive archi-
tecture, GRUE (Goal and Resource Using architecturE) with
the following features:

e it provides support for goal generators, allowing an agent
to generate new top-level goals in response to the current
game situation and assign priorities to goals based on the
current situation; and

e it uses a new arbitration algorithm which allows multi-
ple programs to run actions in parallel during each cycle

where this is possible.

Resources

A key idea in GRUE is the notion of a resource. Resources
such as game objects and information are represented in
terms of properties, allowing the agent to share resources
between goals.

Informally, a resource is anything necessary for a rule in a
plan to run successfully. Resources are stored in the agent’s
world model and represented as lists of lists, where each sub-
list contains a label and one or more values associated with
that label. Each of these sublists represents a property. All
resources have an ID and a TYPE properties and may list ad-
ditional properties as required by the application. For phys-
ical objects, these might include location, colour, or shape.
For example, weapons could be represented as the following
resources:

(Weaponl
[TYPE Weapon]
[SUBTYPE MachineGun]
[CARRIED Truel)

(Weapon?2
[TYPE Weapon]
[SUBTYPE SniperRifle]
[CARRIED Truel])

(Weapon3
[TYPE Weapon]
[SUBTYPE RocketLauncher]
[CARRIED False])

Many objects in real and simulated worlds are divisible.
Resources capture this reality by allowing properties to have
divisible values, denoted by the DIV keyword. Resources
with divisible properties can be split into two or more parts,
as required by the agent’s current goals. For example,

(Goldl [TYPE money] [Amount DIV 20])

represents twenty gold coins. We can use part of this re-
source to pay for something, and hold onto the rest.

Conditions in GRUE TRPs match against resources in the
agent’s world model using resource variables. A resource
variable is a 3-tuple containing an identifier for the variable,
a set of required properties, and a set of preferred properties.
The required properties list specifies those properties that
must be present for a resource to be bound to the variable. If
there is more than one resource with all the required proper-
ties, the resource matching the largest number of preferred
properties will be bound. If two or more resources have all
the required properties and the same number of preferred
properties, then one resource will be chosen arbitrarily.

This representation allows the creation of agents with
flexible behaviour. An agent can prefer a particular item,
but substitute any item with the necessary properties for the
task at hand. For instance, in a game such as Unreal Tour-
nament, an agent might prefer rocket launchers, as specified
by the resource variable:
(?Weapon

([TYPE Weapon] [CARRIED Truel)

([SUBTYPE RocketLauncher]))



If the available resources are those listed above, the agent
won’t be able to use its preferred weapon, the rocket
launcher, because it has a CARRIED value of false. Instead,
the resource variable will bind to one of the other weapons
(chosen arbitrarily). However, the agent will choose a rocket
launcher if it is carrying one.

In addition, we define special notation to allow us to pre-
fer particular values or ranges of values for properties. A
range with soft boundaries represents a preference for a
value within the range, but a value outside the boundary is
also acceptable. A range with firm boundaries specifies that
the value must lie within the range. We also allow a utility
ordering over the range. For example, we can specify that
a property value should be ‘between 5 and 10 but closer to
10, ‘as small as possible’, or ‘ideally between 30 and 40°.
In a game world, this notation can be used to select nearby
items (smallest distance), the weapon with the most ammu-
nition, or spare items to sell (largest number). It could also
be used to select locations such as the closest hiding place.

Details of the range notation are beyond the scope of this
paper (see (Gordon & Logan 2004)). However, as an ex-
ample, the following resource variable requests a weapon,
preferably a machine gun, as close to the agent as possible
and no further than ten units away.

(?ClosestWeapon
([TYPE Weapon]
[DISTANCE #| 0 <- 10 |#])
([SUBTYPE MachineGun]))

Finally, here is an example of a TRP using resources. This
TRP causes an agent in a first-person shooter type game to
shoot at nearby enemies, turning to face them if necessary.
The rules are written using an if ... then ...format, with the
word “null” representing the null action.

if not (?enemy
([TYPE Enemy] [VISIBLE True]
[NEARBY Truel])
())
then
null

if (?enemy
([TYPE Enemy] [VISIBLE Truel
[NEARBY Truel])
)

and (?weapon
([TYPE Weapon] [CARRIED Truel)
([SUBTYPE MachineGun]))

then

shoot (?enemy)

if (?enemy
([TYPE Enemy] [VISIBLE Falsel]
[NEARBY TRUE])
)

and (?weapon
([TYPE Weapon] [CARRIED Truel)
([SUBTYPE MachineGunl]))

then

turn_-towards (?enemny)

Overview of GRUE

The GRUE architecture contains four main components: a
working memory, a set of goal generators, a program selec-
tor and the arbitrator (see Figure 1).
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Figure 1: The GRUE Architecture

The system runs in cycles. At each cycle:

o the world interface takes information from the environ-
ment, in this case a game engine, does any necessary pre-
processing, e.g., computing the distance between game
objects and the agent, and stores the results as resources
in working memorys;

e goal generators are triggered by the presence of particu-
lar information in working memory, creating new goals
and/or adjusting the priority level of existing goals as the
agent’s situation changes;

o the filter removes low priority goals;

e the program selector creates a task for each goal by
matching the goal against the success condition of a
TRP—a task contains the TRP, the priority of the goal,
and a flag indicating whether the associated goal is a
maintenance goal or an achievement goal; and

o the arbitrator decides which task(s) to run during the cur-
rent cycle.

The cycle then repeats.

Goal arbitration is a key feature of GRUE and we describe
the goal arbitration algorithm in more detail. The arbitrator
allocates resources to each task, allows each program to pro-
pose one or more actions, checks the list of proposed actions
for conflicts and finally executes a consistent subset of the
actions. The arbitrator attempts to execute as many high-
priority tasks as possible. To do so, it allocates resources to
the tasks, starting with the highest priority task. The main
criteria used for binding resource variables is that a lower



priority task may never take resources from a higher priority
task. Therefore, we allow the highest priority task to bind
its resources first. When a GRUE TRP is run, the resource
variables are matched against the resources stored in work-
ing memory. A resource variable can only be bound to a
resource which has all of the properties listed in the required
properties list. In the case of a tie, the resource variable will
bind to the resource with the largest number of preferred
properties. If two or more resources have all the required
properties and the same number of preferred properties, then
one resource will be chosen arbitrarily. If a resource variable
is bound during one execution cycle it will be bound to the
same resource at the next cycle unless the resource is no
longer available, e.g., if it has been bound by a higher prior-
ity task or the game object represented by the resource is no
longer available.

A task which is capable of firing a rule in the TRP as-
sociated with the task, i.e., where the resource variables in
the conditions of a rule can be bound to resources, is said
to be runnable. Once the variables have been bound, each
runnable task proposes an action. If the actions conflict, for
example, if two tasks propose moving in opposite directions,
the action proposed by the lower priority task is discarded.
GRUE chooses the largest set of actions that can be run con-
currently during each cycle.

Evaluation

We have tested our architecture in Tileworld, a commonly
used testbed for agent architectures (Pollack & Ringuette
1990). Tileworld consists of an environment containing
tiles, holes and obstacles, and an agent whose goal is to
score as many points as possible by pushing tiles to fill in the
holes. The environment is dynamic: tiles, holes and obsta-
cles appear and disappear at rates controlled by the experi-
menter. While Tileworld is not a game, it shares the dynamic
features of many computer games. We have used Tileworld
to allow us to verify that GRUE works as expected before
implementing an agent for a more complicated commercial
game environment.

GRUE is designed such that all of the main features can
be enabled or disabled. We conducted three tests to evaluate
the effectiveness of preferred properties, divisible properties
and the GRUE architecture as a whole. In each case we com-
pared a ‘standard’ GRUE agent with all the features enabled
with an agent which had the relevant feature(s) disabled,
and/or simple transformations applied to the goal generators
and TRPs. The agents were compared in two Tileworld envi-
ronments, ‘hard’ and ‘easy. The hard environmental case is a
sparse, rapidly changing environment, while the easy case is
a dense, slowly changing environment. The data presented
is an average of 50 scores in each of the two environments.

To test the advantages of preferred properties, we investi-
gated two methods of eliminating preferred properties from
the programs. The first method simply deletes all preferred
properties from each resource variable appearing in a rule
condition. The second method moves all preferred proper-
ties into the required properties list.

As can be seen in Figure 2, the standard GRUE agent out-
performs both the agent with preferred properties deleted
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Figure 2: Performance of a GRUE agent compared to agents
without preferred properties

and the agent with ‘preferred’ properties required in both
hard and easy environments.

Next we compared the standard agent against an agent
without divisible properties or value ranges (see Figure 3).
As can be seen, the standard agent performs better than
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Figure 3: Performance of a GRUE agent and an agent with-
out numerical ranges or divisible properties

the agent that does not use divisible properties or ranges.
The difference is particularly marked in the easy environ-
ment, where the score of the standard agent is over 2.5 times
greater than that of the test agent.

Finally, we evaluated the effectiveness of the GRUE ar-
chitecture as a whole. From Figure 4 we can see that the
GRUE agent (with the goal generators, filter and arbitrator
enabled) outperforms a similar agent using a static set of
goals with constant priorities set by the programmer.

Although preliminary, our data supports our hypothesis
that the features provided in GRUE are useful for agents in
dynamic environments. An agent with all of the features en-
abled performs better (on average) than agents with one or
more features disabled. In the Tileworld agent, our agent
shows the largest decrease in performance when the numer-
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Figure 4: Performance of a GRUE agent and an agent with
static goals

ical features are disabled. We can also see that if preferred
properties are not used, the agent will perform better if it is
designed to require only those properties that are absolutely
necessary rather than requiring all properties that might be
useful.

We have also implemented a GRUE agent for Unreal
Tournament. We are currently improving the set of TRPs
for the Unreal Tournament agent and collecting data in this
environment.

Related Work

Computer games and other simulated environments have
many attractions for Al researchers and there has been a con-
siderable amount of work in this area.

Our approach builds on that of (Nilsson 1994; Benson &
Nilsson 1995). GRUE differs from (Benson & Nilsson 1995;
Benson 1996) in that the GRUE arbitrator does not use re-
wards or time estimates. Instead, goals in GRUE are given a
priority value by the goal generator. While it would be pos-
sible to use reward/time ratios to compute goal priorities, we
believe that simple priority values determined by the current
context result in more believable behaviour. A disadvantage
of using a reward/time ratio with fixed rewards is that unless
the reward values are carefully chosen (or context depen-
dent), the programmer cannot force the agent to work exclu-
sively on a high priority goal. If a less important goal can be
completed in a sufficiently short time, the arbitration scheme
proposed by Benson and Nilsson will always take the time
to complete it. By contrast, GRUE’s arbitrator will pursue
multiple goals simultaneously where possible and otherwise
focus on the highest priority goal.

The architecture which is probably most similar to ours
is Wright’s MINDER1 (Wright 1997). MINDERI uses a
library of teleo-reactive programs and generates and man-
ages motives, which seem to be the functional equivalent of
goals. Each motive contains a condition to be made true,
an insistence value which represents the importance of the
goal, and a flag indicating whether or not the motive has
passed through an attention filter. The filter uses a simple

threshold function, allowing motives through when their in-
sistence is above the threshold. MINDERI is based on a
three-layer architecture developed as part of the Cognition
& Affect project by Sloman and Beaudoin (Wright, Sloman,
& Beaudoin 1996). As such, it includes both a management
layer and a meta-management layer. The management layer
can suspend tasks, schedule tasks, and expand a motive into
a plan. The meta-management layer is responsible for mon-
itoring the management layer and making adjustments as
necessary. However, MINDER1 can only execute one plan
at a time. GRUE’s ability to work toward several goals at
once, choosing actions based on the relative importance of
the goals and the availability of resources gives GRUE addi-
tional flexibility.

The use of commercial computer games as a platform for
Al research goes as far back as 1987, with the creation of an
agent for the game Pengo (Agre & Chapman 1987). Agre
& Chapman’s approach is to use simple rules, which, when
combined with a complex environment, allow the appear-
ance of intelligent behaviour in their agent. These rules are
quite similar to TRPs in that they allow the agent to auto-
matically take advantage of new opportunities and react to
obstacles. Pengi’s rules match against agents and objects
in terms of their use rather than using specific identifiers.
This is rather similar to our own approach of representing
resources in terms of properties. However, in contrast to
GRUE, Pengi does not represent or reason about goals, and
has no state.

Much work on game agents has been done using the
Soar architecture (e.g., (Laird & Duchi 2000; Laird 2000;
van Lent et al. 1999)). The Soar system is designed to rea-
son about goals, but it is limited to a single goal hierarchy.
Several approaches have been taken to the use of multiple
goal hierarchies in Soar, however they require either repre-
senting some goals implicitly or forcing unrelated goals into
a single hierarchy (Jones et al. 1994). In contrast, GRUE
has been designed to process parallel goals.

DePristo and Zubek (DePristo & Zubek 2001) describe a
hybrid architecture used for an agent in a MUD (Multi-User
Dungeon). This type of environment is essentially a role-
playing game and typically involves tasks like killing mon-
sters and buying equipment such as weapons and armor. The
architecture included a deliberative truth maintenance and
reasoning component along with a reactive layer capable of
handling urgent situations without input from the delibera-
tive layer. The system was capable of surviving in the MUD
environment, but several problems were encountered. The
system had difficulty representing quantities like amounts of
gold, and there were some problems handling goals. In con-
trast to DePristo and Zubek’s architecture, GRUE has been
designed to process goals and we have designed our data
structures specifically to handle the types of information and
tasks that are commonly encountered in game environments.

Bryson’s work (Bryson 2001) is closely related to teleo-
reactive programs. Bryson describes an approach to build-
ing behaviour-based agents called Behavior-Oriented De-
sign. She discusses both a development process and a mod-
ular architecture which includes Basic Reactive Plans as one
of the core components. Basic Reactive Plans are essentially



identical to teleo-reactive programs. She has used BOD sys-
tems for a number of applications, including a robot control
system, modelling primate behaviour, and characters in an
interactive virtual world. One significant difference between
Bryson’s system and ours is that her agents are controlled by
drive collections. A drive collection is just a Basic Reactive
Plan which contains a list of tasks the agent might want to
do. Using this representation, tasks always have the same
relative importance. GRUE’s ability to change the relative
priorities of goals at any time allows greater flexibility in
decision making.

Conclusions

We have argued that game environments can be effec-
tively handled by an agent architecture which uses an ex-
plicit representation of goals. Taking inspiration from
robotics, we have proposed an approach based on teleo-
reactive programs. TRPs allow goal-directed behaviour and
handle changes in the environment gracefully. Existing
teleo-reactive architectures (e.g., (Benson & Nilsson 1995;
Benson 1996)) have a number of drawbacks from a game
point of view. We have therefore developed a new archi-
tecture, GRUE, which overcomes these limitations. GRUE
agents are capable of generating their own goals and can
execute multiple actions per cycle to achieve several goals
simultaneously. A key idea in GRUE is the notion of re-
sources which represent game objects and information. Re-
source properties allow the flexible allocation of game ob-
jects to tasks and the sharing of resources between tasks de-
pending on task priority and the agent’s preferences. In addi-
tion, GRUE provides support for handling numerical prop-
erty values which are common in game worlds. We have
evaluated the effectiveness of our architecture, and shown
that, in a dynamic environment, a GRUE agent performs bet-
ter than agents without preferred properties, agents without
special facilities for handling numerical values, and agents
with a static set of constant priority goals.

We are currently developing a GRUE agent for Unreal
Tournament. However, we believe the GRUE architecture
can be applied to a wide range of game types. GRUE also
promotes code reuse both within and across games. Teleo-
reactive programs and their associated goal generators can
be reused in similar games or for multiple characters in the
same game. By careful use of preferred properties we can
generate different behaviour from the same basic program.
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