
A Goal Processing Architecture for Game Agents

Elizabeth Gordon∗

School of Computer Science and IT
University of Nottingham

Nottingham NG8 1BB, UK

esg@cs.nott.ac.uk

Brian Logan
School of Computer Science and IT

University of Nottingham
Nottingham NG8 1BB, UK

bsl@cs.nott.ac.uk

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Design

Keywords
Agent architectures, computer game agents, teleo-reactive programs

1. INTRODUCTION
The domain of computer games is becoming increasingly popu-

lar as a research platform for artificial intelligence (e.g., [6, 3, 4]).
Games may be simplified compared to the real world, but they pro-
vide complex, dynamic environments which even human players
find challenging. Current game AIs often exhibit inflexible, pre-
dictable behaviour. In this poster, we present an architecture for
game agents capable of dynamically creating and adjusting their
own goals.

2. GRUE: A NEW ARCHITECTURE
We use teleo-reactive programs (TRPs) as described in [2], which

consist of a series of rules, each of which contains some number
of conditions and actions. A TRP is run by evaluating all the rules
and executing the actions of the first rule whose conditions evaluate
to true when matched against a world model stored in the agent’s
memory. The actions can be durative, in which case the action con-
tinues as long as its condition is true. Our agents use TRPs as pre-
written plans for achieving goals. In contrast to [2], which executes
multiple programs in pseudo-parallel, we allow multiple actions to
be executed during each cycle.

The teleo-reactive architecture described in [2] and [1] is not
completely autonomous. Goals are proposed by a human user who
is also responsible for determining the reward for achieving a goal.
This is reasonable for robots, but not for game agents. Running
programs in pseudo-parallel requires knowing when it is safe to
switch programs. This is difficult or impossible in fast-paced games
or when programs contain disjunct conditions. Game agents also
encounter situations where several items might be adequate for the
same task, or where objects come in quantities (money, ammuni-
tion).
∗Elizabeth Gordon is a PhD student supported by Sony Computer
Entertainment Europe.

Copyright is held by the author/owner.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
ACM 1-58113-683-8/03/0007.

We have developed a new teleo-reactive architecture, GRUE (Goal
and Resource Using architecturE), designed specifically for situa-
tions encountered in games. GRUE is built around the key con-
cept of resources, which overcomes some of the limitations of [2].
GRUE includes the following features:

• it allows an agent to generate new top-level goals in response
to the current game situation and assign priorities to goals
based on the current situation;

• it includes an arbitration algorithm designed to handle situa-
tions which are common in computer games;

• it enables multiple tasks to run actions in parallel during each
cycle when possible

Suspended

Tasks

Current

Tasks

Program 

Selector

Goal 
Generator

Arbitrator

Filter

Teleo−Reactive Programs

Memory 

World Interface

World

World Model

Internal State

Goals

Figure 1: GRUE

Our architecture contains four main components: memory, a set
of goal generators, a program selector and the arbitrator (see Figure
1). The system runs in cycles. During each cycle, information from
the environment is processed by the world interface and then placed
in memory. Goal generators are triggered by the information in
memory, then associated with programs by the program selector,
and then executed by the arbitrator.

The world interface takes information from the environment, in
this case a game engine, does any necessary pre-processing, e.g.,



computing the distance between game objects and the agent, and
stores the results as resources in the memory module. Goal genera-
tors are triggered by the presence of particular information in mem-
ory. They create appropriate goals, computing the priority values
as necessary. The program selector is a simple look-up function,
which matches the condition specified by a goal to the success con-
dition of a program. The program replaces the condition in the goal
structure, creating a task. The arbitrator manages a list of current
tasks, and decides which task(s) to run at the current cycle.

A resource is anything necessary for a rule in a program to run
successfully. Resources are stored in the agent’s world model and
represented as lists of lists, where each sublist contains a label and
one or more values associated with that label. Each of these sublists
represents a property. The ID and TYPE properties are required for
all resources. In addition, resources may list additional properties
as required by the application. For resources representing physical
objects, these might include location, colour, or shape.

A goal consists of an identification string, a priority, a type, and
a condition to be made true. This condition is the same as the end
condition in the program that will achieve the goal. Maintenance
goals, where the agent is attempting to maintain a condition, are
a special case, distinguished from achievement goals by the type
field.

A resource variable is used by a program to specify a required re-
source. A resource variable is a 3-tuple containing an identifier for
the variable, a set of required properties, a set of preferred proper-
ties. The required properties list specifies those properties that must
be present for a resource to be bound to the variable. When several
resources are available, the resource matching the largest number
of preferred properties will be bound. To use a resource variable in
the condition of a rule, the programmer uses a bind function which
returns a binding if one can be made, and otherwise returns false.
A binding is a pair containing a variable name and a resource.

Programs are pre-written teleo-reactive programs extended with
resource variables. A TRP is a list, containing an identification
string, a list of arguments, and 1 or more rules. The rules are eval-
uated in order, with the first rule whose condition is true proposing
some number of actions to execute.

Tasks are created from goals by the program selector, and contain
an identification string, a priority, a type, and a program. Runnable
Tasks are those tasks that have had enough resource variables bound
to make one or more rules runnable. Suspended Tasks are tasks
which are not runnable due to lack of resources. Tasks achieving
maintenance goals persist in the arbitrator, even when the goal con-
dition (currently) achieved. As long as the condition is maintained,
the rules in the TRP will not fire, but the task can still use resources.
These maintenance goals should have a appropriate priority so they
can be used to prevent the character from disposing of necessary
items or “forgetting” to maintain a crucial condition.

3. GOAL ARBITRATION
It is the job of the arbitrator to execute as many tasks as possible.

To do so, it must allocate resources to the tasks, resolving conflicts
where possible. This may involve suspending currently executing
tasks and/or resuming suspended tasks as new tasks are proposed
by the goal generators and the set of available resources change,
e.g., due to changes in the game environment or the passage of
time.

The arbitration process first allocates resources to each task, then
allows each program to propose actions, then checks the list of pro-
posed actions for conflicts before actually executing them.

The main criteria used for binding resource variables is that a
lower priority task may never take resources from a higher prior-

ity task. We allow the highest priority task to bind its resources
first. Each resource variable is matched against the resources stored
in memory. A resource variable can only be bound to a resource
which has all of the properties listed in the required properties list.
In the case of a tie, the resource variable will bind to the resource
with the largest number of preferred properties. If two or more re-
sources have all the required properties and the same number of
preferred properties, then one resource will be chosen arbitrarily.
When a resource variable is bound during one execution cycle and
then used again during the next cycle, it remains bound to the same
resource unless that resource is no longer available.

Once the variables have been bound and each task has proposed
an action, there may still be some conflicts. For example, two tasks
might propose moving in opposite directions. The easiest way to
resolve such conflicts it to simply discard the action proposed by
the lower priority task. GRUE chooses a set of non-conflicting ac-
tions, favouring actions proposed by higher priority tasks.

4. IMPLEMENTATION
We have implemented a complete GRUE agent for the Tileworld

environment [7]. The Tileworld agent performs well, and we have
demonstrated that using resources with preferred properties is ad-
vantageous.

We have also developed a basic agent for the game Unreal Tour-
nament, using the Gamebots toolkit [5]. The basic agent uses a
fixed set of goals, with predetermined priority values, and shows
predictable behaviour. Our future work will focus on comparing
GRUE agents to similar agents without the goal autonomy features
of GRUE. In particular, we will implement a complete GRUE agent
for Unreal Tournament, and compare it against our basic agent with
fixed goals.

5. REFERENCES
[1] S. Benson. Learning Action Models for Reactive Autonomous

Agents. PhD thesis, Stanford University, December 1996.
[2] S. Benson and N. Nilsson. Reacting, planning and learning in

an autonomous agent. In K. Furukawa, D. Michie, and
S. Muggleton, editors, Machine Intelligence, volume 14. The
Clarendon Press, 1995.

[3] M. DePristo and R. Zubek. Being-in-the-World. In
Proceedings of the 2001 AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment, 2001.

[4] N. Hawes. Real-time goal orientated behaviour for computer
game agents. In Proceedings of Game-ON 2000, 1st
International Conference on Intelligent Games and
Simulation, pages 71–75, November 2000.

[5] G. Kaminka, M. M. Veloso, S. Schaffer, C. Sollito,
R. Adobbati, A. N. Marshall, A. Scholer, and S. Tejada.
Gamebots: A flexible test bed for multiagent team research.
Communications of the ACM, 45(1), January 2002.

[6] J. Laird and J. Duchi. Creating human-like sythetic characters
with multiple skill levels: A case study using the soar
quakebot. In AAAI Fall Symposium Seris: Simulating Human
Agents, November 2000.

[7] M. Pollack and M. Ringuette. Introducing the tileworld:
experimentally evaluating agent architectures. In T. Dietterich
and W. Swartout, editors, Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 183–189, Menlo
Park, CA, 1990. AAAI Press.


