
Extending Game Participation with Embodied Reporting
Agents

Dan Fielding, Mike Fraser, Brian Logan and Steve Benford
School of Computer Science and IT

University of Nottingham
Nottingham NG8 1BB, UK

{dgf, mcf, bsl, sdb}@cs.nott.ac.uk

ABSTRACT
We introduce a multi-agent framework to generate reports of
players' activities within multi-player computer games so that
other players who are currently unable to participate can keep
track of the activities of their colleagues. We describe an initial
implementation of our framework as an extension to the Capture
the Flag game within Unreal Tournament. We report the results
of a preliminary experiment that shows that embodied reporter
agents give varying coverage depending on deployment strategies
used, and, in particular, suggests that the dynamic assignment of
reporter agents by an editor agent can provide more effective
coverage than static assignment schemes. Finally, we explore
future applications of this work including other genres of games,
the emergence of games as spectator sports, implications for
pervasive games as well as non-gaming applications.

Categories and Subject Descriptors
I.2.11 [Artificial intelligence]: Distributed Artificial Intelligence
– Intelligent agents, Multiagent systems; Applications and Expert
Systems – Games.

General Terms
Design, Experimentation, Human Factors.

Keywords
Reporting, game agents, on-line participation, audiences.

1. INTRODUCTION
Recent years have seen an explosion in the field of on-line
gaming. From chess, to multi-player shooters, to massively
multiplayer online fantasy environments, players are now logging
on from across the globe to pit their wits against one another on a
simulated battlefield. Agent technologies are at the centre of this
explosion, especially when it comes to creating engaging and
believable non-player characters. In this paper, we explore
another role for agents in online computer games - automatically

generating reports of the action so that external observers can
keep track of the action from a distance.
There are two primary motivations for this idea. First, we
recognise that online gaming is a highly social activity. Gaming
is not just about winning, but is also about comradeship and
community and we therefore wish to develop services that
support players in maintaining contact and coordinating their
activities with fellow players, even though they may be
distributed around the globe. Second, emerging massively-
multiplayer games provide persistent experiences that continue
around the clock - even when a player is not present - and in
which gamers invest great effort in building up a character over a
long time period. These players may wish to receive news from
the game even when they are unable to play, or may wish to be
alerted to important new developments that require them to
return to the game at short notice (an increasingly likely scenario
as such games become accessible using mobile technologies
making it easier to quickly step into and out of a game). A
further motivation for this work is the recognition that games are
beginning to emerge as a spectator sport, as evidenced by the
growth of game tournaments, professional players and early
examples of television shows that broadcast multiplayer
gameplay, which raises requirements for new ways of portraying
games to external viewers who are not directly participating.
In this paper we describe a multi-agent system to address the
challenges involved in reporting, editing and presenting game
information to external participants, in order to support more
complex forms of participation in online gaming. These
challenges include being able to observe and reason about the
activities of human players, deciding which activities are relevant
to an external participant as well as how to present them, and
also providing appropriate mechanisms for players to maintain
privacy or conversely, to deliberately try to become visible to
others.

2. KEY PRINCIPLES
We begin by motivating our approach to multi-agent reporting.
Development of the framework has been driven by two core
principles:
1. Agents that capture information about a game should be

directly embodied within the game so that they are visible to
and subject to the same constraints as players.

2. Distributing the responsibility for the different functional
roles of extracting, filtering and reporting information
between different kinds of agent can provide the kind of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACE’04, June 3-5, 2004, Singapore.
Copyright 2004 ACM 1-58113-882-2/04/0006 $5.00

flexibility that is needed to deal with the unpredictable
nature of events within computer games.

Considering our first principle, one approach to reporting on an
online computer game would involve developing a single
omniscient agent to both gather and deliver information about an
environment to external observer. In order to have complete
knowledge of all of the events taking place within the game, an
omniscient agent would need to be implemented as a privileged
system process that would have access to all of the information
passing through a game server. While this may be a good
approach in some circumstances, most notably where global
coverage is needed, the game world is small and the agent can be
trusted by the players to be impartial and not to give information
away to competing players, we have adopted an alternative
approach based on embodied agents. In this case, agents which
collect information are part of the game world and, like the
players themselves, can only perceive a limited part of the total
environment. The agent is also directly visible to the players and,
unless specifically protected, is subject to the normal interactions
of the game (e.g., might be attacked by the players). We prefer
this approach for several reasons.
Our primary focus is on providing information about a game to
individuals who may in time become players. These individuals
may have different interests (e.g., in following particular players
or teams) which might best be serviced by dedicated agents. At
the same time, it is important not to give these potential players
an unfair advantage by giving too much information away (in
which case, omniscient agents could become a potential security
threat by revealing strategies to the opposition).
Reporting on people's online activities raises the important issue
of privacy, especially for larger games that extend beyond small
groups of friends. Players may not wish everything that they do -
and especially say - to be reported to a wider audience.
Embodied agents have both limited ability to gather information
due to their constrained perspective and perhaps more
importantly, are visible to the players who will therefore be more
aware of when they are being watched and can adapt their
actions accordingly. For example players can try to avoid the
agents, can modify their behavior when around them, or can
literally fight to maintain their privacy by destroying them.
Conversely, players can deliberately try to influence the agents
by approaching them, either 'acting up' for the camera (e.g.,
celebrating a victory) or perhaps targeting specific messages at
particular individuals the outside world. In either case,
embodiment gives the players some influence over what is
reported.
Finally, from a technical perspective, the larger and more
complex the environment that an agent is charged with reporting
on, the harder it becomes to cover all of the events taking place.
Although omniscience avoids the need for the agent to position
itself appropriately so as to see the events as they occur, the
requirements of data collection, (especially for widely distributed
games that span multiple game servers) and the inferences
required to produce interesting commentary (e.g., to select the
most relevant events) may ultimately limit the scalability of the
omniscient approach. A more scalable approach is likely to
involve multiple cooperating agents where no single one agent
has complete knowledge of the game. A single monolithic
commentator may also be less easy to develop and maintain than
a modular system comprising several types of individual agents
working together.

This brings us to our second core principle. The overall task of
reporting on a computer game involves a variety of tasks. One of
these is gathering information, where embodied agents have to
make decisions about what information to gather and where and
how to find it. A second is presenting this information to external
observers, which may be done in a variety of ways - ranging from
animated talking reads through to simple text messages -
depending upon the devices they are using and their current
situation. There is also a need to decide how to coordinate these
various functions, for example determining how many news
gathering agents can be sent into the game world before their
presence has an adverse affect on the game and given that their
number will be limited, deciding how best to deploy them. Given
the complexity of these tasks, we follow an approach in which
the responsibilities for different aspects of reporting are
distributed across different agents that then collaborate in a
scalable and flexible way.

3. KEY PROBLEMS
In this section, we briefly outline some of the problems which
must be addressed to perform the key tasks of obtaining
information, processing information, and presenting information.

3.1 Obtaining Information in the Game World
In order to report on world events, an embodied agent needs to
maneuver into a suitable position to observe or otherwise detect
them. First, the agent needs some way of being in the right place
at the right time – either by working out where that may be for
itself, or by being told where to go by another agent. This in turn
implies that (some) agent must be capable of predicting where
events are likely to occur, or that the agent can react quickly
enough to get to an event observed by another agent before it
finishes. Second, the agent needs to be able to actually navigate
its way to the intended destination, preferably utilising the route
involving lowest “cost” – this could be interpreted as the route
that is quickest, safest, or maybe some other criteria.
Once in a position, the agent needs to produce some form of
useful output about the events in the game, and continue to do so
until the event is finished. We assume that, in general, the game
server does not generate “predigested” events suitable for
reporting. The agent therefore needs to deduce which events are
occurring based on the raw sensory data that it receives, and
work out what is happening in situations where this is not
immediately obvious, perhaps taking an educated guess if there
is some degree of uncertainty. The agent also needs to identify
when an event starts and stops, in order to know when to both
start and stop reporting, and also to know when it is a suitable
time to move on to a new event. If the event changes location
while in progress, which is often the case when an event is
centred around moving object such as a particular player, the
agent needs to follow the object of interest and maintain line-of-
sight. While witnessing the action, an agent needs to obtain all
relevant information and produce its report without interfering
with the gameplay too much, e.g., getting in the way or getting
shot, if possible. This could involve watching from a distance,
and perhaps taking evasive action if imminent danger is sensed.
Finally, an agent needs some way or prioritising the events that it
is possible to view. It needs to decide which events that it
witnesses in the game world are interesting enough to warrant
being passed on in a report, either to viewers or other agents. It
also needs to be able to be able to consider whether to abandon
viewing an event in order to search for one of greater interest,

considering the time it will take to relocate and the possibility of
missing an event occurring at the location that it’s already
watching.

3.2 Processing Information
By assumption, each reporting agent has access to only limited
information about events in the game. They are also likely to
have only limited inferential capabilities. As a result, they are
fallible, at least in the sense that they can misinterpret what the
observe or otherwise distort its significance. With a system
comprising multiple agents, we could utilise some form of report
collation to validate and verify reports. The agents could also
share information on where the most interesting events in the
world are currently occurring, in order to redirect agents that are
currently watching nothing of interest. Incomplete or conflicting
reports could be used to direct the collection of additional related
information, in order to clarify uncertain situations.
Furthermore, there could be several layers of information
processing. For example, in a situation where there is a
tournament of individual games taking place, each game could
have its own set of agents gathering information from the game
and delivering the collated event reports to an audience
interested in that one particular game. At a higher level, there
could be another agent taking these reports and collating them,
producing a report on the state of the tournament as a whole
without including the kind of in-depth information about each
game that the agents at lower levels produce.

3.3 Presenting Information
With all the event information collected and processed, the
agents are left with the task of presenting it to the outside world
somehow. The exact process depends on a number of criteria,
such as:

 When to present the information. We could have a
commentary produced during the game, or a post-game
report and analysis, for example, each requiring a different
approach.

 The output device. Reports delivered using a device such as
a web-browser or IRC-channel can be much more verbose
than a report delivered using, for example, SMS on mobile
phones.

 How to organise and present the information. There is the
possibility of using plain text, or adding in pictures and
possibly video feeds, or even using a talking-head style
virtual presenter.

 The interests of the viewers. Some viewers could be
interested in a particular player or team, for example, or a
particular type of event within the game.

In many cases, it may be useful to be able to produce two or more
forms of output at the same time and/or to be able to tailor
reports to the user’s current situation. For example, we could
imagine a scenario in which each user has their own presenter
agent which adapts as the user moves from high to low
bandwidth devices or to situations in which the commentary
should be less intrusive. This implies that it would be useful for
a commentary system to support different forms of presentation
being swapped in and out easily.

3.4 Related Work
A number of systems have attempted to address these problems.
For example, there is a large amount of related work on
commentary systems in general, including systems using single
[1] or multiple [2] agents.
There is also considerable body of work on using external agents
to assume roles in virtual environments, such as characters in
interactive fiction [3] or artificial players in games [4]. Existing
tools designed to deliver reports from game platforms to external
media such as an IRC channel or a webpage (e.g. TTM [5]),
typically run on the game server itself, in effect performing the
same role as an omniscient, disembodied reporter to gather and
deliver event information. There is also a body of work on
delivering commentary on Robocup [6] games, e.g. the MIKE
commentary system, which uses multiple distributed agents to
analyse and commentate [7]. (The MIKE system has also been
adapted for other situations.) With regard to the earlier
discussion of issues in detection of interesting events, there is
some related work on the use of various forms of group detection
to infer interaction between avatars, such as the use of clusters to
extract interesting scenes in a recorded event [8]. In previous
work, we have investigated the use of F-formations [9] to detect
social encounters [10].
However, so far as we are aware, no single system has addressed
all of the reporting challenges outlined above. Nor has any of the
work to date addressed the issue of embodiment and the
problems of privacy seriously. In the next section, we outline a
new framework for game reporting which attempts to address
these issues.

4. REPORTING FRAMEWORK

Figure 1. Reporting Framework.
Figure 1 summarises our framework in terms of a number of
defined roles that have been inspired both by conventional
human news-gathering techniques and the key problems
discussed in the previous subsection. Participants are those
inhabitants of the virtual world who can directly influence the
course of events, and thus are the individuals that are interesting
to report on. In our chosen example, which we describe in more
detail in the next section, our virtual world is a map in a game of
Unreal Tournament, and the Participants are the players' avatars
inside the game.

Reporters also inhabit the virtual world, but cannot directly
influence it in the same manner as the Participants. Reporters
gather information about the state of the world, attempting to
deduce what events are taking place and passing the information
they gather on to Editors. Following our first core principle,
Reporters are embodied and have a constrained perspective.
Editors take the information they receive from Reporters, and
pass on the most important and relevant data to Presenters.
Editors can attempt to guide the Reporters in their information
gathering, possibly by trying to co-ordinate their activities to
improve the coverage of the game or by notifying Reporters of
the types of events they are most interested in receiving reports
on.
Presenters are responsible for delivering the information received
from the Editors to the outside world, in whatever format is
desired. For example, we might realize a presenter that updates a
webpage as events take place, or that delivers news reports as an
animated talking head, or one which delivers short notifications
of important events to users via mobile phone SMS. The time at
which commentary is delivered is also an important
consideration; some presenters could be tasked with delivering
real-time commentary to an audience as events unfold, while
another presenter could be responsible for producing a summary
once the events in the virtual world have completed. More
sophisticated reporters could re-order information to make it
more easy to understand, more dramatic, or even omit events
which they feel uninteresting.
Editor and Presenter agents could also potentially be embodied
in the virtual world, although this is at least initially of less
concern than the Reporters being embodied. Editors and
Presenters are not necessarily designed to directly interact with
or observe the Participants in the game environment. We might
however embody such agents in cases where the behind-the-
scenes reporting environment itself was interesting for study or
scrutiny, such as in observations of production techniques and
reporting itself, or possibly in future games that could include
news feeds from elsewhere in the game world or where players
might even try to capture and control the news service as part of
the game.
In the remainder of this paper, we concentrate primarily on
Reporter agents as these provide the most basic service of
capturing information about the game upon which Editors and
Presenters subsequently build. However, in section 4, we show
that the introduction of an editor which dynamically allocates
roles to reporters can improve the coverage of events reported,
and provides some support for our multi-agent framework. In the
next section, we describe the details of the game environment
used to test our approach.

5. SYSTEM IMPLEMENTATION
The prototype consists of a variable number of embodied reporter
agents and a single (non-embodied) editor agent. The reporters
observe events in the game world, make simple inferences about
their significance and send reports to the editor. The editor
collates the reports and sends its output to a log file to allow us
to analyse the performance of the system. The editor may also
direct the reporters' activities in a general way, e.g., by sending
them to a particular region of the game world.
Our prototype system is based on “Capture the Flag”, one of the
game types provided by Unreal Tournament [11]. Unreal
Tournament (UT) is a 'first person shooter' game, in which

players compete in a map or level to achieve specific game
objectives. While the games in UT have only a small number of
players and are often quite short, they retain key characteristics
of games like Everquest [12], while still remaining manageable
for development and testing. The UT game engine has rich and
well-documented APIs capable of supporting agent interaction
and the game code itself is robust and well maintained.
Significant parts of the game logic are exposed in UnrealScript
making it easier to tailor the game environment for our
experiments. In common with many other recent first person
shooter games, UT offers "bot" players: simple computer-
controlled avatars who are designed to fill in for absent human
players. UT's built-in bots can play Capture the Flag games
fairly competently, and simplify initial system testing, allowing
games to be played and reported upon without the need to find
human players to participate in the game.
Capture the Flag is a team-based game and was chosen as it was
felt that team-based games offer a richer set of situations and
events for reporting than individual-based games, as well as
engendering the possibility that spectators might affiliate with
one another in favour of a particular team.
In Capture the Flag, two teams of players (Red and Blue), each
attempt to collect the opposing team's flag from their base and
carry it back to their own team's flag base to score a point, while
at the same time preventing the enemy team from doing the same
to their flag (typically by shooting them). There are five flag-
related events that we wish to detect, as they are relevant to the
outcome of the game:

 Flag Takes: When a player collects the enemy team's flag
from their flag-base.

 Flag Drops: When a player carrying the enemy team's flag is
killed. The flag lies on the ground at the location of the
player's death.

 Flag Pickups: When a player collects the enemy team's flag
from a dropped location.

 Flag Returns: When a player collects their own team's flag
from a dropped location. When this happens, the flag is
instantly returned to the flag-base.

 Flag Captures: When a player carries the enemy team's flag
to their own flag in their own flag-base. This event causes
the player's team to score a point.

The game is won by the team that performs the most flag
captures (and thus scores the most points) within a set time limit.
Individual players are also awarded points for favorable actions,
e.g., killing opposing players and retrieving their own flag from
enemy hands. While these would be interesting to report,
individual player scores are unrelated to team scores, and as such
are not reported in our current prototype.

5.1 Modifications to Unreal Tournament
We extended the Capture the Flag game in a number of ways to
support reporting.
We modified the game to allow a third, impartial team (Green) to
join the game in addition to the two standard player teams (Red
and Blue). Players on the Green team are embodied but are not
allowed to directly influence the game - they cannot collect items
or use weapons. Normally, players are rewarded with points for
killing an enemy player. The built-in UT bots will not fire upon
reporters intentionally but can inadvertently kill or injure a

reporter when shooting at a player on the opposing team. Since
reporters are neutral spectators and not directly involved the
game, we need some mechanism to discourage the (human)
players from firing upon them at will. We therefore introduced a
penalty in the form of a points deduction for any player that kills
a reporter. If the game server is set so that friendly players cannot
injure one another then neither team can injure the reporters. For
the purposes of our tests, however, we have chosen to leave
'friendly fire' enabled, allowing us to test the abilities of editors
to reassign reporters to cover for those killed while witnessing
events.
We also modified the way in which players communicate within
the game. Unreal Tournament features two modes of text-based
communication: Global and Team. Whenever a player messages
the Global channel, all players in the map can read what they
have to say, and when a player messages the Team channel, only
the player's teammates can read the message. We have added a
proximity requirement to the Global form of text chat, so that one
must first stand near to the player in order to hear what they are
saying. The purpose of this proximity-based text messaging is to
force the reporters to be close to any players that they wish to
hear talking. Chat sent to the Team channel can still be heard
regardless of position by the player's teammates, but if an
opponent or reporter is standing near the player who is talking
then they can "overhear" them.
We use the Gamebots [13] interface to allow agents to
communicate with the UT game server. Gamebots is a socket
based interface which allows agents running on remote machines
to connect to the game world and interact with it by sending
commands for desired actions to the server and receiving sensory
information from it. The agents were developed using the
SIM_AGENT toolkit [14, 15].

5.2 Reporters

Figure 2. Annotated screenshot showing an embodied
reporter and a player within Unreal Tournament.

The reporters connect to the UT server via Gamebots. Gamebots
provides each reporter with data that approximates to that
available to a player. A reporter's sensory range is limited, and
to obtain information about events in other parts of the map, the
reporters must physically move to a different location. The
reporters navigate around the UT map using the built-in
pathnodes system, which enables bots (and agents) to move
around the map without performing calculations on the map
geometry itself.

5.2.1 Reporting Events
By remembering the objects in the game world that they have
sensed in the past and the state of objects that they can currently
sense, the reporter can infer which actions are being carried out
within the game. For example, if a reporter observes a dropped
flag, it assumes that the last player it saw carrying the flag
dropped it. When reporters are killed they "respawn" near to a
randomly determined flag-base. Respawing causes the reporter to
forget the current state of the flags and its current position (since
it may end up a large distance away from where they killed, and
thus a large distance away from the task they were performing).
It also gives the players a way of influencing what the reporter
'knows' and hence can report.
The five flag events can be detected by the reporter(s) in
different ways. For example, some events can be detected from
more than one location at the same time while others require a
reporter to be present at one particular location in the world.

5.2.2 Event Location
Flag captures can be detected globally, as they change the game
score and this is something that Gamebots agents are always
notified of. However, in order to correctly work out which player
performed the flag capture, the reporter must witness them doing
so. If they fail to witness the flag capture event, they can take an
informed guess at who performed the event based on the last
player they saw carrying the flag.
Flag returns can be detected in one of two locations. First, if a
reporter witnesses a player performing a flag return at the
location of the dropped flag (by walking over it), that is
obviously enough to produce a complete report of that event.
Second, however, is the possibility of a reporter watching the
flag-base from which the flag was taken, and to which it is being
returned; if the reporter sees the flag reappear in the flag-base
and the game score has not changed (since then it would likely
be a flag capture instead), it can deduce that it was returned,
although it will be unable to know who performed the flag return
event.
Flag drops can be detected by a reporter witnessing a flag lying
uncarried outside of a flag-base. In order to know who dropped
the flag, the reporter must either have seen it occur, or infer that
it was dropped by the player last seen carrying the flag.
Flag pickups and takes can be detected either by a reporter
witnessing the event happen (i.e. where the player walks over the
flag), or by witnessing a player carrying the flag. In the latter
instance, it is often unclear whether the flag was taken (from a
flag-base), or picked up (from outside a flag-base), so the
reporter will take a guess based on the last known location of the
flag.

5.2.3 Event Duration
The events the reporters currently detect are notionally
instantaneous. However, in many cases, the fact that an event
occurred can be inferred from the state of the game world for a
short time after the event actually occurred.
The flag capture event itself is typically detected as soon as the
game score changes. In order to detect the player performing the
event, the reporter must spot said player carrying the flag before
the capture takes place. Depending on where the flag is collected
from by the player, this can either be quite a brief period of time
(e.g. if the flag was dropped near to the player’s flag-base), or a
long period of time (e.g. if the flag was carried all the way from

its flag-base), and the chance of a given reporter witnessing the
player carrying the flag varies depends on this duration. Flag
pickups and takes are similar, detectable as long as the player is
carrying the flag.
Flag drops can be detected during the period the flag is lying
unattended outside of the flag-base. However, to be able to report
which player dropped the flag, the reporter must have observed
some player carrying the flag since it was last returned to a flag
base.
Flag returns can be detected whenever the reporter notices that a
flag which was once missing has since reappeared in its flag-
base, so long as the game score didn’t change. However, in order
to detect the player who performed the flag return, the reporter
must witness that player walk over the dropped flag. Since such
an occurrence is instantaneous, this leads to flag returns being
possibly the hardest event to produce a complete report on.

5.2.4 Roles & Coordination Strategies
Reporters have three basic roles they can fill within our
framework: idle (i.e., roaming the map at will); watching a flag
base; and pursuing a flag carrier. If a reporter which is watching
a flag base sees a player take the flag from the flag base, it
switches to the "pursuing a flag carrier" role. The pursuit role
itself has a number of sub-roles, e.g., a dropped flag is
considered more interesting that a carried flag. In all roles, the
reporters observe and report the five flag events listed in section
4. They also report player deaths while pursuing a flag carrier
and the death of any player whose name appears in a list of
"interesting" players. This allows basic tailoring of the interests
of the reporters. Reports are sent via the Team message channel
and can be directed to other reporters, editors or all members of
the Green (reporting) team.
We investigated three reporter coordination strategies. In the
first, each reporter wanders around the environment looking for
and following events of interest. In the second strategy, the
reporters are assigned static roles for the duration of the game,
e.g., watching a flag base. In the third strategy, an editor agent
dynamically assigns roles to reporters based on the information it
receives from the reporters about events in the game and the
current state of their reporters, e.g., their current location, or
whether they have just been killed.

5.3 Editor
The prototype system contains a single editor. The editor agent
has two main responsibilities.
First, the editor needs to pass any interesting segments of the
output generated by the reporters to the presenter. Since
reporters are not infallible, it is beneficial to verify this data
before passing it on, for example by removing conflicting reports
or by requiring multiple reporters to detect the same game event.
The editor classifies reports into one of three categories:
unconfirmed, confirmed, and conflicting. Unconfirmed reports
are those produced by a single reporter, confirmed reports are
those produced by multiple reporters who are in agreement with
one another, and conflicting reports are those produced by
multiple reporters who do not agree on all of the information; for
example, two reports may give a different instigator for an event,
or may even disagree on the type of event itself in the case of flag
takes being mistaken for pickups and vice versa. Depending on
how much emphasis the editor places on generating entirely
accurate commentary, it may choose to send unconfirmed reports

to the presenter, or alternatively it may choose to await
confirmation from other reporters, passing on information about
that event to the presenter only when it has been reported on
more thoroughly.
Second, in the case in which the reporter are following a dynamic
role allocation strategy, the editor must ensure that all the
reporters are gathering information that the audience deems
interesting. The editor attempts to assign roles to reporters in
such a way as to provide good coverage of the events in the
game, and tries to avoid having reporters standing idle or
assigning multiple reporters to the same task unnecessarily. With
two or more reporters, the editor attempts to keep one reporter
watching each flag base at all times. Whenever a reporter
assigned to one of these tasks becomes unable to perform it any
longer - due to the reporter being killed, becoming disconnected
from the game, or pursuing a flag carrier - the editor selects the
most appropriate replacement to fill the vacant role. In our
current implementation, the most suitable replacement is defined
as the closest idle reporter to the point at which the task is
carried out. The current prototype focuses mainly on the
assignment of roles to reporters; the collation and verification of
reports is still under development.
While the game is in progress, the editor also periodically
publishes reports on flag captures in the form of an html
document.

5.4 Log Parser
The UT game server logs all flag related events that occur in the
course of a game. The reporters produce output in the same
format as the game server logs. We have developed a tool to
parse these log and report files, comparing events which actually
took place in the game to those recorded by the reporters. In
order for an event detected by a reporter to match an event in the
game's log files during comparison, the reporter must correctly
identify not only the type of event but also the player who was
performing that event. In some cases it is possible that only the
event will be detected and that the reporter will be unable to
determine who performed it. In the case of such a partial match,
or if a reporter attributes an event to the wrong player, we treat
this as a half match; that is, if all events in a single game were
detected in such a way, the coverage rate for the reporter in that
game would be given as 50%. The log parser allows us to get an
accurate indication of how complete the reporters' coverage of
events is - the greater the percentage of events detected by the
reporters, the better - and thus detect when alterations to the
system are beneficial

6. RESULTS
We have conducted a series of experiments to discover how well
embodied reporting agents can cover these events in a game. We
arranged three sets of games, using automated players and
reporter agents. In each set of games the agents used a different
strategy for reporter coordination. In the first case, our reporters
moved around the environment following events of interest, with
no inter-reporter coordination. In the second case, reporter agents
were assigned 'static' roles, i.e. were employed on a particular
task throughout the game. For example, a single agent might
attempt to watch a flag base at all times. The third case used an
Editor agent to coordinate and assign roles between reporters
dynamically, determining at particular points what task each
particular reporter should be undertaking. Our hypothesis was
that the first case (no role allocation) would produce worse

coverage of events than the second case (static role allocation),
and that the second case (static roles) would produce worse
coverage that the third (dynamic role allocation).
The following graphs depict the results from the three series of
tests, showing the coverage of various configurations of reporters
and editors in our game environment. Each test used a sample of
50 simulated games, and the graphs show the average coverage
of one to four reporters across the five flag events for these
games. Games were each 20 minutes long, with six bots acting as
players (split into two teams of three each) on the "Adept" skill
setting.

Figure 3. Results: Reporters with No Roles.

Figure 4. Results: Reporters with Fixed Roles.

Figure 5. Results: Reporters with Dynamic Roles.
In all three sets of results, the flag capture event coverage is
higher than the other event types. There are two reasons for this.

Firstly, whenever a team's score count increases, the reporters
can surmise that a flag has been captured, because there is no
other way for a team to score. Secondly, in order for a player to
capture the enemy team's flag, they have to carry the flag from
one flag-base to the other. Since the flag-bases are usually at
opposite ends of the map, it is likely that the reporters will spot
them and be able to correctly work out who it was that captured
the flag, especially on maps where there are few routes between
the two flag-bases. Because the flag capture event coverage relies
so little on the position of the reporters, it remains consistently
high for the sets of results shown.
Figure 3 shows the coverage achieved by the reporters when
none were given any specific role; all reporters assumed an 'idle'
state and roamed the map by walking between flag-bases. Aside
from the flag capture event, coverage is quite low with one
reporter, and rises steadily as more reporters are added to the
environment. In this fashion, we can achieve a reasonable level
of coverage by simply adding more and more reporters to the
world, although this is not an indefinitely scalable solution - with
too many reporters in the game, the players will find them
increasingly obtrusive, impairing line-of-sight or possibly even
blocking movement. In this experiment, the reporters ignored one
another. As a result, two or more reporters often group together
and commentate on the same events, which has benefits in some
situations (if one reporter is killed then there is still another
present to see the events), but also drawbacks (there are fewer
reporters available to commentate on events elsewhere in the
world).
Figure 4 illustrates the results for static role assignment, where
two reporters were positioned to permanently watch over the two
flag-bases, one at each, and the remaining two reporters were
allowed to patrol as in the previous experiment. At first glance, it
might be expected that having a reporter positioned at each flag-
base should theoretically mean that 100% of flag take events are
reported; however, the reporters are often killed as the flag-bases
tend to be combat hot-spots, and they will also follow a player
who collects the flag in an attempt to find out what happens to it.
In both cases, it may take some time for the reporter to travel
back to the flag-base, and during this time the flag may be taken
again. The results reflect this, offering only a slight improvement
over the previous data. We also tested a similar case to figure 4,
where the flag-base watching reporters were not allowed to
follow a player who took the flag, which gave slightly worse
results - the flag take event coverage was roughly the same, but
coverage of pick-ups, drops and returns were all lower.
Figure 5 shows data for dynamic role assignment with four
reporters and an editor. The editor attempted to keep one
reporter watching each flag-base at all times, and in the case of
assigned reporters being killed or following other events it would
reassign the closest idle reporter to take over. As can be seen, the
flag take and flag return event coverage are both higher due to
the flag-bases being under observation a greater fraction of the
time, and for coverage in these two events we are getting
performance from 3 reporters and 1 editor that is roughly
equivalent to 4 reporters with no editor. Flag drop event coverage
also sees an increase with an editor, although less than the takes
and returns, possibly due to there being a flag-base watching
reporter to follow any flag carrier (and thus see when they drop
the flag) more often. Flag pick-up events actually have lower
coverage, the reasons for which are somewhat harder to pinpoint.
One possibility is that idle reporters are being reassigned to

0
10
20
30
40
50
60
70
80
90

100

Captures Pick Ups Takes Drops Returns

Flag Events

%
 C

ov
er

ag
e

One Reporter Two Reporters Three Reporters Four Reporters

0
10
20
30
40
50
60
70
80
90

100

Captures Pick Ups Takes Drops Returns

Flag Events

%
 C

ov
er

ag
e

One Reporter Two Reporters Three Reporters Four Reporters

0
10
20
30
40
50
60
70
80
90

100

Captures Pick Ups Takes Drops Returns

Flag Events

%
 C

ov
er

ag
e

One Reporter Two Reporters Three Reporters Four Reporters

watch flag-bases when the flag-base watchers go to follow a flag
carrier. There are therefore fewer idle reporters on patrol who are
likely to see flag pick-up events take place at any given moment.
Flag pick-up events occur less often than all the other types of
event, so it seems worthwhile to trade slightly poorer coverage of
pick-ups for a greater improvement in the coverage other events.

Table 1. Reported events by role type.
No Role Static

Role
Dynamic

Role
Events Correctly
Reported

2521 2788 2987

Percentage of Total
Events Reported

59.3% 61.4% 69.1%

Table 1 shows the overall coverage for the same three sets of
roles as in the previous charts. The results confirm our
hypotheses. Overall, assigning static roles to reporters improves
even coverage by a small amount (2.1%). Although the
performance of reporters with dynamic role allocation is lower
when detecting flag pick-up events, overall there is an
improvement in coverage of events of 7.7% compared with static
roles, and 9.8% compared with no role assignment. These results
confirm that reporters require adaptation strategies to improve
their performance. Additionally, however, they illustrate that the
editor plays a key role in our system, and therefore our
framework of separating out reporters, editors and presenters is a
promising line of enquiry.

7. FUTURE WORK
We are aware of a number of limitations of our current
implementation of our framework that need to be addressed in
the short term.
Our current reporters occasionally report events incorrectly. It
appears that each reporter will produce a report of an event that
never happened roughly once per ten minutes, on average. They
also correctly identify events, but report them as being carried
out by an incorrect player with roughly the same frequency. This
becomes a more serious problem as we add more reporters, since
a larger number of erroneous reports are produced. In order to cut
down on the number of erroneous reports produced, we are
currently working on the implementation of validation and
verification of reports received by the editor, for example by
requiring the same report to reach an editor from multiple
sources before being accepted, and perhaps discarding any
reports which contradict those produced by another reporter.
Another limitation of our current reporters is that they have a no
sense of self-preservation. Although Gamebots provide messages
that alert reporters of when they are in danger of being hit by
various incoming projectiles, these are currently ignored. Even if
reporters could take avoiding action, it is inevitable that they will
sustain injuries during the course of a game. It would therefore
be interesting to see what happens if we allow them to disregard
editor orders temporarily and seek out health packs in order to
stop themselves being killed. However, this requires that editors
are able to deal with uncooperative or unresponsive reporters,
although they will have to do this anyway since they can
occasionally become disconnected from the game server or get
stuck.
There are also limitations with our current editor. It does not deal
with the "cost" of reporters' deaths very elegantly, and always

selects the closest idle reporter to replace one which has been
killed, without taking into account other considerations. For
example, a reassigned reporter may arrive at the location at
which an event was occurring only to find that the event has
since finished, and that there is nothing of interest left to report
upon. We intend to investigate the typical duration of various
events, so that an editor can compare this to the cost of
reassigning a reporter and calculate whether it will arrive at the
event in time.
Beyond these short-term fixes and extensions, we anticipate a
number of broader future developments. We intend to create a
range of presenter agents targeted at mobile phones, conventional
graphical user interfaces (for example, based upon a scrolling
tickertape display used to enhance group awareness in
cooperative work environments [16]) and also for 3D interfaces,
perhaps building upon the previous generation of animated
talking head news reporters [17] to provide queued players with
information about events in a game or possibly even to offer an
in game news service. The latter might also involve helping to
position virtual cameras within a virtual world as part of live
broadcasts to external observers, perhaps during game
tournaments or as part of future television shows (see [18] for an
example of creating a live TV broadcast from an online game and
a discussion of virtual camera techniques). We also intend to
extend our approach to a broader range of games, which will
require the ability to reason about a more diverse range of human
activities, especially for large-scale persistent games that may
involve many players, many different objects and interactions
and a broader rage of social situations. Finally, we intend to
apply our techniques to the emerging area of pervasive and
mixed reality gaming in which games reach out into the physical
world through devices such as mobile phones, enabling players to
access a game while on the move, providing them with location-
based experiences, and supporting games in which online players
collaborate with those on the streets [19]. Commentating agents
offer one way in which online games might reach out to relatively
low-powered devices such as mobile phones.

8. CONCLUSION
We have proposed a multi-agent system to address the challenges
involved with delivering commentary on game events to non-
game participants. Our strategy involves the delineation of the
functions of reporting, editing and presenting. We have discussed
the merits of our system with regard to particular facets of
reporting, and presented some preliminary results to justify our
approach. We have examined the relationships between humans
and agents in a reporting system, with particular emphasis on the
privacy concerns that arise, and outlined methods of dealing with
these concerns such as the embodiment of reporters. We have
also examined the relationships between agents of the different
proposed roles, discussing the need for co-ordination in order to
provide optimal reporting coverage. Our test data helps to
illustrate the benefits of some aspects of the framework, such as
the positive impact an editor can produce by co-ordinating the
efforts of reporters. We have also briefly examined the prospect
of delivering reports to different types of device with the use of
presenters. Although our framework remains to be tested across
its entirety, we have populated each layer with preliminary
designs and illustrated the benefits of this approach to gaming.
Whilst we have chosen a particular game engine and game type
with which to implement and test reporter agents, much of our
prototype system is flexible enough to migrate between systems

and between game types. For example, in order to allow our
prototype system to function with a 'Domination' game-type,
reporters would simply need to recognise a different series of
events to 'Capture the Flag'. All other agents' functions, however,
remain identical. There remains much scope for further
developments within this framework and we hope to realise this
potential in various facets of future work
Finally, we would like to re-emphasise the strength of our
approach with respect to the privacy issues surrounding
dissemination of game data. Despite the inclusive nature of on-
line gaming, and the situations in which such data might be
presented, privacy remains an important issue for gaming
communities. In embodying our approach alongside an analysis
of the nature of reporting, we hope to have illustrated the
importance of relationships in agent privacy. Firstly, in the
relationship between humans and agents we have been sensitive
to the continual requirement for subtlety in the allowing
participants and players to feel comfortable with heterogeneous
and large-scale data parsing and transmission. Secondly, we have
illustrated how interrelated these difficulties are with privacy
relationships between agents - the very coordination that occurs
in the multi-agent system has direct impact on the relationships
between participants and players and agents in gaming systems.

9. REFERENCES
[1] Noma, T. and Badler, N., A Virtual Human Presenter.

IJCAI Workshop on Animated Interface Agents: Making
Them Intelligent, (1997), 45—51.

[2] André, E. and Rist, T., Presenting through Performing: On
the Use of Multiple Animated Characters in Knowledge-
Based Presentation Systems. International Conference on
Intelligent User Interfaces, ACM, (2000).

[3] Bates, J., Loyall, B., Reilly, W. S., Broad Agents. In
Proceedings of the AAAI Spring Symposium on Integrated
Intelligent Architectures, Stamford University, (1991).

[4] Laird, J., It Knows What You're Going To Do: Adding
Anticipation to a Quakebot. AAAI 2000 Spring Symposium
on Artificial Intelligence and Interactive Entertainment,
(2000).

[5] http://www.planetunreal.com/ttm/ (verified January 2004)
[6] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I. and Osawa,

E., Robocup: The Robot World Cup Initiative. Proceedings
of the First International Conference on Autonomous
Agents (Agents'97), (1997), ACM, pp. 340—347.

[7] Frank, I., Tanaka-Ishii, K., Matsubara, H., and Osawa, E.,
Walkie-Talkie MIKE. RoboCup 2001: Robot Soccer World
Cup V, (2001), Springer-Verlag, pp. 343—349.

[8] Drozd, A., Benford, S. and Fraser, M. What's the Story?
Extracting Scenes From Improvised Role-Play. Technical
Report Equator-02-031, Equator – Nottingham, 2002.

[9] Kendon, A., Spatial organization in social encounters: the F-
formation system. Conducting interaction: Patterns of
behavior in focused encounters, (1990), Cambridge
University Press, Chapter 7.

[10] Logan, B., Fraser, M., Fielding, D., Benford, S.,
Greenhalgh, C. and Herrero, P., Keeping in Touch: Agents
Reporting from Collaborative Virtual Environments. AAAI
Spring Symposium. (2002), AAAI Press.

[11] http://unreal.epicgames.com/ (verified January 2004)
[12] http://www.everquest.com/ (verified February 2004)
[13] Adobbati, R., Marshall, A. N., Scholer, A., Tejada, S.,

Kaminka, G., Schaffer, S. and Sollitto, C., Gamebots: A 3D
Virtual World Test-Bed For Multi-Agent Research. Agents
'01, ACM, (2001).

[14] Sloman, A. and Poli, R., SIM_AGENT: A toolkit for
exploring agent designs. Intelligent Agents II - Proceedings
of the Second International Workshop on Agent Theories,
Architectures and Languages, (1996), pp. 392-407.

[15] Sloman, A. and Logan, B., Building Cognitively Rich
Agents Using the SIM_AGENT Toolkit. Communications
of the ACM, 42, 3, pp. 71—77.

[16] Fitzpatrick, G., Parsowith, S., Segall, B., and Kaplan, S.,
Tickertape: Awareness in a Single Line. CHI'98 Summary,
281282. ACM, (1998).

[17] http://www.ananova.com/video (verified January 2004)
[18] Greenhalgh, C., Benford, S., Taylor, I., Bowers, J., Walker,

G. and Wyver, J., Creating a live broadcast from a virtual
environment. In Proceedings of ACM Computer Graphics
(SIGGRAPH'99), Los Angeles, USA, (1999), pp. 375-384.

[19] Flintham, M., Anastasi, R., Benford, S., Hemmings, T.,
Crabtree, A., Greenhalgh, C., Rodden, T., Tandavanitj, N,
Adams, M, Row-Farr, J., Where on-line meets on-the-
streets: experiences with mobile mixed reality games. In
Proceedings of CHI'03, ACM, (2003).

