
Multi-Agent Intention Progression with Reward Machines
Michael Dann1 , Yuan Yao2 , Natasha Alechina3 , Brian Logan3,4 and John Thangarajah1

1RMIT University
2University of Nottingham, Ningbo China

3Utrecht University
4 University of Aberdeen

{michael.dann, john.thangarajah}@rmit.edu.au, yuan.yao@nottingham.edu.cn,
{n.a.alechina, b.s.logan}@uu.nl

Abstract
Recent work in multi-agent intention scheduling
has shown that enabling agents to predict the ac-
tions of other agents when choosing their own ac-
tions may be beneficial. However existing ap-
proaches to ‘intention-aware’ scheduling assume
that the programs of other agents are known, or are
“similar” to that of the agent making the prediction.
While this assumption is reasonable in some cir-
cumstances, it is less plausible when the agents are
not co-designed. In this paper, we present a new ap-
proach to multi-agent intention scheduling in which
agents predict the actions of other agents based on
a high-level specification of the tasks performed by
an agent in the form of a reward machine (RM)
rather than on its (assumed) program. We show
how a reward machine can be used to generate tree
and rollout policies for an MCTS-based scheduler.
We evaluate our approach in a range of multi-agent
environments, and show that RM-based schedul-
ing out-performs previous intention-aware schedul-
ing approaches in settings where agents are not co-
designed.

1 Introduction
The Belief-Desire-Intention (BDI) model [Rao and Georgeff,
1992] forms the basis of much of the research on symbolic
models of agency and agent-oriented software engineering
[de Silva et al., 2020]. In the BDI model, beliefs represent
the agent’s information about its environment, other agents
and itself, goals (desires) are states of affairs to achieve, and
intentions are commitments to achieving particular goals. A
BDI agent program consists of a set of initial beliefs and a set
of plans for achieving goals. Plans are composed of primi-
tive actions that directly change the state of the environment,
and subgoals which are achieved by their own plans. The
BDI approach to agent development has a number of signifi-
cant advantages compared to other approaches to developing
rational agents. End users find programs couched in mental-
istic terms such as ‘beliefs’ and ‘goals’ easier to understand
[Norling and Ritter, 2004], and the use of predefined plans
encoding standard responses to situations gives predictable

and explainable behaviour that can be more easily validated
by end-users and other stakeholders [Broekens et al., 2010].

A key problem for a BDI agent with multiple intentions
is to determine ‘what to do next’: which goal the agent
should be trying to achieve, and which plan it should use
to achieve it. This problem is termed the intention progres-
sion problem (IPP) [Logan et al., 2017]. A number of ap-
proaches to various aspects of the IPP in the single agent set-
ting have been proposed in the literature, including summary-
information-based (SI) [Thangarajah et al., 2003; Thangara-
jah and Padgham, 2011], coverage-based (CB) [Waters et al.,
2014; Waters et al., 2015] and Monte-Carlo Tree Search-
based (MCTS) [Yao et al., 2014; Yao and Logan, 2016;
Yao et al., 2016b] approaches. There has been relatively lit-
tle work on intention progression in a multi-agent setting. In
the multi-agent setting, how an agent progresses its intentions
has implications for both the achievement of its own goals and
the achievement of the goals of other agents, e.g., when the
execution of a step in a plan of one agent makes the execu-
tion of a step in a plan of another agent impossible. Dann et
al. [2020] extended the MCTS-based approach in [Yao and
Logan, 2016] to a multi-agent setting, and showed that their
‘intention-aware’ scheduler IA out-performed non-intention-
aware scheduling such as [Yao and Logan, 2016]. However,
their approach assumes that agents have access to the plans
used by other agents to achieve their goals. More recently,
Dann et al. [2021] proposed an approach based on partially-
ordered goal-plan trees, in which agents schedule their in-
tentions and predict the actions of other agents based on an
abstraction of their own program. While their IB scheduler
does not require knowledge of the plans comprising the other
agents’ programs, there is no guarantee that the other agents
in a multi-agent environment have “similar” programs, or are
even BDI agents.

In this paper, we present IRM , a new approach to multi-
agent intention scheduling in which agents predict the ac-
tions of other agents based on a high-level specification of
the tasks performed by an agent rather than its program (or
assumed program). For many scenarios, it is reasonable to
assume an agent knows the high-level specification of the
tasks performed by other agents. For example, when agents
cooperate to achieve a team goal, it is reasonable to assume
that each agent knows the tasks assigned to the other agents

in the team, but may not know how they will achieve them.
Tasks are assumed to be specified declaratively, for example,
by Linear Time Temporal Logic (LTL) formulas. We focus
on tasks represented by reward machines (RM) introduced in
[Toro Icarte et al., 2018]. Reward machines are Mealy ma-
chines (automata with outputs) which can be computed from
task specifications expressed in a range of goal and property
specification languages, including LTL and LTLf (LTL on fi-
nite traces), regular expressions and other goal specification
languages [Camacho et al., 2019]. Critically, RMs encode
the logical structure of a task rather than a particular imple-
mentation of the task in program code. We show how, given
information about the actions possible in the environment, a
reward machine can be used to generate tree and rollout poli-
cies for a MCTS-based scheduler that allow an agent to pre-
dict the actions of other agents based only on the task they are
performing. We evaluate our approach in a range of multi-
agent environments, and show that IRM out-performs previ-
ous intention-aware scheduling approaches in settings where
agents are not co-designed.

2 BDI Agents
In this section, we introduce the basic components of a BDI
agent, including beliefs, goals, plans and goal-plan trees.

Beliefs and goals. We assume a finite set of propositions
P . S ⊆ ℘(P) is a non-empty finite set of environment
states (truth assignments to propositions in P). The agent’s
beliefs B = {b1, . . . , bn} are a finite set of ground literals
defined over P representing its information about the en-
vironment. For simplicity, we assume the environment is
fully observable, and the agent’s beliefs are updated when the
state of the environment changes. The agent’s top-level goals
G = {g1, . . . , gm} are a finite set of ground literals repre-
senting states that the agent wants to bring about. Note that
G does not need to be consistent, as conflicting goals may be
achieved at different times.

Actions and plans. An agent can perform a set Act =
{α1, . . . , αk} of primitive actions in the environment. The
preconditions of an action αi, φ = pre(αi), are a set of liter-
als that must be true for the action to be executable, and the
postconditions of αi, ψ = post(αi), are a set of literals that
are true after the execution of the action. We assume that ac-
tions are deterministic: if the preconditions of an action hold,
then the postconditions of the action hold after executing the
action. An action is executable if B |= φ. Actions are or-
ganised into plans. Each goal g is associated with a set of
plans π1, . . . , πn that achieve g. Each plan πi is of the form
g : χ ← s1; . . . ; sm, where χ = pre(πi) is a set of literals
specifying the context condition which must be true for πi to
begin execution, and s1; . . . ; sm is a sequence of steps which
are either actions or subgoals. A plan can be executed if its
context condition holds, the precondition of each of its action
steps holds when the step is reached, and each of its subgoal
steps has an executable plan when the subgoal is reached. A
goal g is considered achieved (and any intention with g as
top-level goal is dropped) if (and only if) all the steps in a
plan πi for g are successfully executed.

Goal-plan trees. The relationship between the plans, ac-
tions and subgoals that can be used to achieve a goal can
be represented by a hierarchical structure termed a goal-
plan tree (GPT) [Thangarajah et al., 2003; Thangarajah and
Padgham, 2011; Yao et al., 2016a]. The root of a goal-plan
tree is a goal-node representing a top-level goal, and its chil-
dren are plan nodes representing the plans that achieve the
top-level goal. As only one plan must be executed to achieve
the goal, goal nodes can be viewed as or-nodes. The children
of a plan node are the action and subgoal nodes corresponding
to the steps in the plan body. As all the child nodes of a plan
node must be executed to achieve the goal, plan nodes can
be viewed as (ordered) and-nodes. Each subgoal node has its
associated plans as children. The resulting tree structure rep-
resents all possible ways an agent can achieve the top-level
goal.

3 Multi-Agent Intention Progression with
Reward Machines

In this section, we present our approach to multi-agent in-
tention progression. We assume that we have a BDI agent
operating in an environment containing k other agents. Un-
like [Dann et al., 2020; Dann et al., 2021] the programs of
the other agents are not assumed to be similar to those of
the BDI agent; only a high-level declarative specification of
the other agents’ goals or tasks specified in appropriate for-
mal language, such as LTL or LTLf , is given. The key idea
underlying our approach is to use these declarative specifica-
tions and the actions possible in the environment to predict
the likely behaviour of other agents. To simplify notation, we
present our approach for a single other agent; however it is
straightforward to extend it to multiple other agents.

Rather than work directly with LTL specifications, we fo-
cus on tasks represented by reward machines. Reward ma-
chines can be computed from task specifications expressed
in a range of goal and property specification languages, in-
cluding LTL and LTLf , in a straightforward way (given the
reward for satisfying the specification). In the interests of
brevity, we refer the reader to [Camacho et al., 2019] for de-
tails of reward machine generation.

A reward machine (RM) [Toro Icarte et al., 2018] is a
Mealy machine where states represent abstract ‘steps’ or
‘phases’ in a task, and transitions correspond to observa-
tions of high-level events in the environment indicating that
an abstract step/phase in the task has (or has not) been com-
pleted. We assume that events are sets of literals over P
(we denote the set of all literals over P by P̄). Formally,
we require that events are generated by a labelling function
L : S × Act × S → ℘(P̄); for example, a labelling could
consist of postconditions of actions. An agent may have sev-
eral goals or tasks, each represented by a reward machine.

Definition 1 A reward machine is a tuple R =
(U, uI ,Σ, δR, rR) where:

• U is a finite non-empty set of states;

• uI is the initial state;

• Σ is a finite set of environment events;

• δR : U × Σ→ U is a transition function that, for every
state u ∈ U and environment event σ ∈ Σ, gives the
state resulting from observing event σ in state u; and

• rR : U × Σ → R ∪ {−∞} is a reward function that
for every state u ∈ U and event σ ∈ Σ gives the reward
resulting from observing event σ in state u.

In line with the approach to taskable RL [Illanes et al., 2020],
we restrict our attention to task completion reward machines
which, on producing a non-zero reward, go into a final state
from where it is not possible to make a transition to any other
state. We denote by FR the set of ‘positive reward’ states of
R, that is, states u′ such that for some u, σ, δR(u, σ) = u′

and rR(u, σ) > 0. For each u′ ∈ FR, let r−R(u′) = rR(u, σ).
Similarly we define the set of ‘infinite negative reward states’
NR = {u′ | ∃u∃σ.δR(u, σ) = u′ ∧ rR(u, σ) = −∞}. NR
states represent violation of invariant properties.

Reward machines were originally proposed as a way of in-
creasing sample efficiency in reinforcement learning, by mak-
ing the high-level structure of a task available to guide learn-
ing. However, in our approach, they are used to formalise the
abstract goal-directed behaviour of agents regardless of how
the agent is programmed.

We represent the actions the other agent may perform us-
ing an action automaton, in which the states are states of the
environment, and the transitions are the actions that may be
performed in a state.

Definition 2 An action automaton is a tuple A =
(S,Act , d, δA) where:

• S ⊆ ℘(P) is a non-empty finite set of states (truth as-
signments to propositions in P);

• Act is a non-empty finite set of actions;

• d : S → ℘(Act) \ {∅} is a function which assigns to
each s ∈ S a non-empty set of actions; and

• δA : S × Act → S is a partial function that for every
s ∈ S and action α ∈ d(s) gives the state resulting from
executing α in s.

For an agent with tasks specified by reward machines
R1, . . . , Rm over possibly different alphabets Σi correspond-
ing to labelling functions Li and an action automaton A, we
define a task automaton characterising the current step of
each task and the reward obtained by the agent on performing
an action α as:

Definition 3 A task automaton M = A×R1 × · · · ×Rm is
a tuple (Q,QI ,Act × Σ1 × · · · × Σm, δM , rM) where:

• Q = S × U1 × · · · × Um;

• QI = S × {uI1} × · · · × {uIm};
• (s′, u′1, . . . , u

′
m) = δM ((s, u1, . . . , um),

(α,L1(s, α, s′), . . . , Lm(s, α, s′)) iff:

– s′ = δA(s, α) in the action automaton;
– u′i = δRi

(ui, Li(s, α, s
′)) in each reward machine

Ri; and

• rM ((s, u1,. . . ,um), (α,L1(s, α, s′),. . . ,Lm(s, α, s′)))=

– Σmi=1r
−
Ri

(δRi(ui, Li(s, α, s
′))) iff for all i,

δRi(ui, Li(s, α, s
′)) ∈ FRi ;

– −∞ iff for some i, δRi
(ui, Li(s, α, s

′)) ∈ NRi
;

– 0 otherwise.

Each state of a task automaton is a tuple of the environ-
ment state and the states of the reward machine for each
task, and transitions are parallel transitions of the reward ma-
chines on receiving the event corresponding to the execution
of an action. Note that the rewards are obtained by the agents
only when all reward machines have reached positive reward
states. Intuitively, the definition of rM says that the agent
whose actions we are predicting will continue until all its
tasks are achieved (when it gets the sum of the rewards for
each task), or it violates an invariant property (when it gets a
reward of −∞).

To predict which actions an agent may perform next we use
the tactic set of the task automaton:

Definition 4 The tactic set T (M, ε) of a task automaton
M = A × R1 × · · · × Rm is the set of all triples of
the form (q, γ, h), where q ∈ Q, γ = (α, σ1, . . . , σm) ∈
Act × Σ1 × · · · × Σm, and h = rmax × εn is the expected
reward of α in q. rmax = max({rM (q′, γ′) | q′ ∈ Q, γ′ ∈
Act×Σ1×· · ·×Σm}) is the maximal possible award, n is the
length of the shortest path in M from q to a state with rmax
reward where the first action on the path is α, and ε ∈ (0, 1)
is a discount factor.

ε penalises unnecessary actions and paths with excessive
number of steps. The expected reward for an action α in state
q depends on the number of actions that must be taken after α
to reach a rmax state. Each action discounts rmax by ε, i.e.,
a path of length n discounts rmax by εn; as a result, actions
that are the first step in shorter paths have higher expected
rewards. As we will see below, the precise value of ε is not
important, so long as it is sufficiently close to 1. Giving the
agent a reward only when all tasks have been achieved en-
sures that the tactic set is insensitive to the particular value of
the discount factor ε.

The computation of the tactic set is shown in Algorithm 1,
and is essentially the least fixpoint of the existential pre-
image function:

pre(γ,X, ε) ={(q, γ, h× ε) | ∃q′.δM (q, γ) = q′ ∧
(q′, γ′, h) ∈ X ∧ ¬∃h′.(q, γ, h′) ∈ X ∧ h′ ≥ h)}

Starting from a set of (q, γ, rmax) triples where rmax =
max({rM (q, γ) | q ∈ Q, γ ∈ Act × Σ1 × · · · × Σm}, that
is, states where the agent has completed all its tasks (without
violating an invariant) and obtained an rmax reward, we work
backwards. At each iteration, we add to the tactic set triples
(q, γ, h), where q is a state in the task automaton from which

Algorithm 1 Computation of the tactic set.
function TACTIC-SET(M, ε)

T1 ← ∅; T2 ← {(q, γ, rmax) | rmax = rM (q, γ)}
while T2 6⊆ T1 do

T1 ← T1 ∪ T2; T2 ←
⋃
γ∈Act×Σ1×···×Σm

pre(γ, T1, ε)
return T1

a state q′ in the current tactic set is reachable, γ is the action
the agent should perform to reach q′, and where the h value is
maximal. That is, we do not include in the tactic set (q, γ, h)
triples, where we have already found a shorter path from q to
an rmax state which uses a different action.

While the size of the task automaton is exponential in the
number of tasks, computation of the tactic-set is polynomial
in M .

Theorem 1 The tactic set can be computed in time polyno-
mial in the size of A×R1 × · · · ×Rm.

The proof is immediate from Algorithm 1. We note that it is
often beneficial to compute the task automaton and the tactic
set for only the current state of the environment and recom-
pute it when the environment changes (or changes “enough”),
as this gives an exponentially more compact representation of
the behaviour of the other agent, compared to, e.g., a policy
for an RL agent that specifies which action to take in all pos-
sible environment states.

The tactic set can be seen as an approximation of the be-
haviour of a rational agent for a given task, in the sense that
it specifies, for each state s and action α, the length of the
shortest sequence of actions starting with α to reach the goal.
If actions have equal cost, we would expect a rational agent
to select actions that reach the goal in fewer steps. For exam-
ple, an optimal policy for a reinforcement learning agent in
an environment specified by A, rewards specified by R, and a
sufficiently large discount factor, will assign nonzero proba-
bility only to actions with the highest value of h. Similarly, a
model-based agent using A∗ search with a state space S and
a set of actions Act, will execute a plan where, in each state
s, an action α with highest h (corresponding to the shortest
distance to the goal). For agents that are programmed, such
as BDI agents, the situation is less clear cut. However, it is
reasonable to assume that a well-written program for a task
will tend to execute actions that have the highest value of h in
a given state.

4 Intention-Aware Scheduling with RMs
In this section, we show how tactic sets derived from task
automata can be used to generate rollouts for an intention-
aware MCTS-based scheduler, which we call IRM . IRM is
based on the state-of-the-art IB scheduler [Dann et al., 2021]
which uses multiplayer MCTS to decide which intention it
should progress next. When performing simulations, IB as-
sumes that other agents will pursue their goals in the same
way as the IB agent would; that is, external agents are mod-
elled using IB’s own (partially-ordered) GPTs. In contrast,
IRM simulates the behaviour of other agents using tactic sets.
This allows IRM to anticipate actions by other agents that an
IRM agent itself would never take. In the remainder of this
section, we briefly outline the modifications to IB .

Modifications to the Expansion Phase of IB . In the expan-
sion phase of MCTS, a child node is added for each action
available at the selected leaf node. In IB , the set of actions
available to the other agent is determined by considering the
next steps in the external agents’ (inferred) GPTs and their as-
sociated preconditions. In IRM , there are two types of node

expansion. At nodes where it is the IRM agent’s turn to act,
expansion proceeds as under IB . However, at nodes where it
is another agent’s turn to act, the set of expandable actions is
inferred from the tactic set used to model the agent.

Modifications to the Rollout Phase of IB . During the roll-
out phase of MCTS, IRM simulates the IRM agent’s actions
in the same way as IB (via random intention progression).
However, it assumes that other agents will attempt to max-
imise the heuristic value, h, of the tactic set. To account for
the fact that maximising h may not be optimal in multi-agent
settings, and that external agents may not act wholly ratio-
nally, we use a softmax distribution over h to yield a noisy
rollout policy. The temperature parameter, τ , of the softmax
distribution controls the stochasticity of the other agents’ roll-
out behaviour.

5 Evaluation
To evaluate our approach, we extend two popular domains
from the reward machine literature, Office World [Toro Icarte
et al., 2018] and Craft World [Andreas et al., 2017], to a
multi-agent setting. As in Dann et al. [2020; 2021], we focus
on two-agent scenarios and consider cooperative, selfish and
adversarial settings.1

In Section 5.2, we study a cooperative task in the Office
World domain. This experiment highlights the hazards in
pairing previous MCTS-based schedulers, which assume an
egocentric model of other agents, with agents that are not co-
designed. In Section 5.3, we study four competitive tasks
in the Craft World domain. In this experiment, we consider
a range of external agents, from fully co-designed agents
that follow the same GPTs to non-co-designed agents, and
study how the degree of design overlap affects IRM and other
MCTS-based schedulers.

5.1 Experimental Setup
In the experiments, all MCTS-based schedulers assume an
equal goal weighting of 1. Episodes terminated due to failure
yield a rollout score of −1. MCTS is configured to max-
imise the discounted return, with a discount factor of 0.99.
Where no intentions are progressable, or simulation suggests
that the currently selected plan results in lower reward than
another plan, the algorithm attempts to replan by selecting a
new plan for the top-level goal in each GPT. Replanning is
handled by allowing the agent to select from any plan at the
root node of the MCTS search tree. Note that allowing the
agent to consider alternatives to its currently intended plan is
low-cost: with MCTS, plans that yield larger average simu-
lated returns automatically receive more of the computation
budget. When no agent can act, even after replanning, the
episode is considered complete.

In both grid world domains considered, the action automa-
ton used by IRM assumes that the other agent can move in
the four cardinal directions (unless blocked by a wall) and
collect/use items at the current grid square. In configuring

1Full source code and demo videos of the agents are available at:
https://github.com/mchldann/IRM IJCAI.

https://github.com/mchldann/IRM_IJCAI

Red agent

Blue agent

Decoration

Coffee location

Mail location

Destination

Figure 1: The Office World domain.

the stochasticity of the external agent’s rollouts, we consid-
ered τ ∈ {0.005, 0.01, 0.015, 0.02} and selected τ = 0.015.

5.2 Office World Experiments
The Office World domain (Figure 1) is a simulated office
environment where agents can collect coffee and mail from
designated locations (brown and green squares, respectively),
and deliver them to a destination (pink square) without step-
ping on any decorations (squares with a cross).

The delivery task can can be described by the following
LTLf formula:

ϕ =�(¬d) ∧ (♦(m ∧ ♦(c ∧#♦(o))) ∨ ♦(c ∧ ♦(m ∧#♦(o))))

∧�(m→ �(c→ #�(o↔ final)))

∧�(c→ �(m→ #�(o↔ final)))

where c represents coffee, m the mail, o the office, and d
decorations. Note that it is allowable for the agent to pick
up one item first, deliver it to the office and then deliver the
second item. Moreover, if the agent gets the mail first, then
after picking up the coffee the agent can only reach the office
at the final time. Similarly, if the agent gets the coffee first,
then after picking up the mail the agent can only reach the
office at the final time. This ensures that the agent does not
get rewarded multiple times. The above LTLf formula can be
translated into the reward machine shown in Figure 2.

We consider a task where two agents (blue and red) must
each deliver both coffee and mail to the destination. Deliver-
ing both items is treated as a single goal. At the start of each

u0

< ¬c ∧ ¬m ∧ ¬d , 0¬c ∧ ¬m ∧ ¬d , 0 >

u1 u2

< c ∧ ¬d , 0c ∧ ¬d , 0 > < m ∧ ¬d, 0m ∧ ¬d, 0 >

u3

< m ∧ ¬d, 0m ∧ ¬d, 0 > < c ∧ ¬d , 0c ∧ ¬d , 0 >

u4

u5

< o, 1o, 1 >

< Tru e, 0Tru e, 0 >

< ¬m ∧ ¬d, 0¬m ∧ ¬d, 0 > < ¬c ∧ ¬d , 0¬c ∧ ¬d , 0 >

< ¬c ∧ ¬d , 0¬c ∧ ¬d , 0 >

< d, − ∞d, − ∞ > < d, − ∞d, − ∞ >

< Tru e, 0Tru e, 0 >
< ¬o ∧ d, − ∞¬o ∧ d, − ∞ >

< d, − ∞d, − ∞ >

Figure 2: Reward Machine for delivering coffee and mail.

episode, each agent is spawned randomly in different rooms.
Stepping on a decoration (a black cross) leads to termination
for the offending agent. Additionally, it is considered dan-
gerous for the agents to occupy the same room, with the task
terminating for both agents if this occurs. The first agent to
deliver both coffee and mail is deactivated, allowing the other
agent to enter the destination room.

We paired the blue agent with three types of red agent:

• A*: an agent that follows the shortest route to the goal,
as calculated by A* on the assumption that the blue
agent will never obstruct it.

• RLτ=0.01: a reinforcement learning agent trained on
IRM ’s reward machine (described below), following a
softmax policy over the optimal Q-values with τ = 0.01.

• RLτ=0.02: as above, but configured to behave more er-
ratically with τ = 0.02.

Note that all three red agents effectively follow single-agent
policies and ignore the possibility of ending up in the same
room as the blue agent.

We compare the performance of the blue IRM agent
against two other MCTS-based approaches: the state-of-the-
art IB scheduler [Dann et al., 2021], and the SP scheduler
from [Yao et al., 2016b]. The intention-aware schedulers,
IRM and IB , are configured to behave cooperatively, i.e. to
maximise the combined, discounted rewards of the red and
blue agents. As SP is based on single-player MCTS it effec-
tively ignores the red agent and always behaves “selfishly”
(i.e., it seeks to maximise its own return).

To generate GPTs for the IRM , IB and SP agents, we
wrote a GPT generator that constructs multiple plans for de-
livering the coffee and mail. The generated GPTs contain
plans that allow the agents to travel both clockwise or anti-
clockwise to the key locations, so that the blue IRM and IB
agents can attempt to avoid the red agent. Actions that move
the agent to a new room have a precondition that the red agent
is not already in that room, making it impossible for the blue
agents to instigate a collision. The plans constructed by the
generator also avoid stepping on decorations. Since IB mod-
els other agents using its own GPTs, it assumes that neither
agent will ever step on decorations. To configure IRM simi-
larly, we set its reward machine to pay a penalty of −∞ for
stepping on decorations.

The preconditions of the movement actions in the plans to
move from one location to another effectively mean that the
movement plans for different goals cannot be interleaved, and
the steps in a plan must be executed in sequence. As such,
the generated plans are totally-ordered, and the IB scheduler,
which supports partially-ordered GPTs, behaves equivalently
to the earlier IA scheduler [Dann et al., 2020] in this domain.

Baseline Compatibility Issues. It is important to note that,
strictly speaking, IB (and IA) are incompatible with the red
agents used in the experiment, as the red agents are not GPT
based. Both IB and IA assume that it is possible to infer
the progression of the other agents’ GPTs from their actions,
and this is required during node expansion and to determine
the starting point of the MCTS simulations. A major advan-
tage of our proposed IRM scheduler is that it does not have

Red agent
A* RLτ=0.01 RLτ=0.02

SP 0.40 0.37 0.44
Blue agent IB 0.62 0.64 0.73

IRM 0.91 0.96 0.97

Table 1: Office World completion rates, averaged over 100 episodes.

this limitation. Nonetheless, to allow comparison against IB ,
we configured the GPT generator to construct plans for ev-
ery possible agent position in the grid. This ensures that,
however the red agent moves, IB’s model of the red agent
always includes applicable plans (allowing it to simulate the
red agent’s behaviour). However, this results in extremely
large GPTs, and for many domains it would be infeasible.
Without this, IB is often unable to find an applicable plan for
the red agents, leaving it unable to simulate their behaviour.
In this case, IB’s performance reverts to that of SP , making
SP arguably a more realistic baseline.

Results
The results of the Office World experiments are summarised
in Table 1. Since there are only two possible outcomes (ei-
ther both agents succeed or both agents fail), the results are
expressed as success rates.

There is an intuitive explanation as to why IRM signifi-
cantly outperforms IB and SP . As IB models the red agent
via its own GPTs and SP does not model it at all, neither
scheduler sees the possibility of both the red and blue agents
being in the same room (since the preconditions of their own
plans means this cannot happen). This clearly illustrates the
risks in assuming that other agents will behave in the same
way as oneself. IRM still expects the red agent to try to avoid
collisions, since collisions lead to poor rollout scores for both
agents, but it sees a non-zero probability of collisions occur-
ring, and hence tries to avoid them.

While IB and SP are blind to the risk of collisions, they
still see that they cannot pass through the red agent’s room.
Therefore, they still try to avoid the red agent, albeit less care-
fully than IRM . However, since IB is intention-aware and SP
is not (SP effectively assumes that the red agent will remain
stationary), IB computes better estimates of the red agent’s
future position. As a result, IB has fewer collisions than SP ,
despite being unaware of all the risks.

5.3 Craft World Experiments
In the Craft World domain (Figure 3), agents must collect
resources and use them to craft various items. For example,
collected wood can be crafted into a stick at a workbench,
then combined with iron at a toolshed to craft an axe. The
axe can then be used to mine a gem. The full list of crafting
rules is given in Table 2.

We consider environments with two agents, blue and red,
and evaluated the agents in four scenarios listed in Table 3.
The shared goal items are required by both agents, while the
agent-specific items in Scenarios 2 and 4 are assigned ran-
domly to the agents (one item each). In Scenarios 1 and 2, the
blue agents (IRM , IB and SP) are configured to behave self-
ishly, i.e. to maximise their own goal achievement. The self-

Red agent

Blue agent

Wood

Grass

Iron

Gold

Gem

Factory

Toolshed

Workbench

Figure 3: The Craft World domain.

Goal Resources Tools Location
Axe Iron, stick Toolshed
Bed Grass, plank Workbench
Bridge Iron, wood Factory
Cloth Grass Factory
Gem Axe
Gold Bridge
Plank Wood Toolshed
Rope Grass Toolshed
Stick Wood Workbench

Table 2: Rules for acquiring goal items in Craft World.

ish (neutral) setting models the case when the red agent is not
cooperative (does not get a reward when the blue agent com-
pletes a task). In Scenarios 3 and 4, they are configured to be-
have adversarially, i.e., to maximise blue goals− red goals.
Since the resources are limited (there are 3 each of wood,
grass and iron), the domain is inherently competitive in both
cases. The positions of the resources, the agents and the craft-
ing locations are randomised at the start of each episode.

As in the OfficeWorld experiments, we wrote a generator to
construct GPTs for the blue agents (again accommodating IB
by including every possible location). However, rather than
generating an exhaustive list of all possible plans, for each
goal item, the generator only considers 2 out of 3 locations
for each resource, and only one of the two toolshed locations.
This is intended to mimic the situation where a developer has
a preference for the ways in which the goals are achieved,
and allows us to study how the blue agents’ performance is
affected by the degree to which the red and blue agents are co-
designed. In addition to the A* and RL agents, we consider
two additional classes of red agent:

• Fully co-designed SP , IB and IRM schedulers, which
share the same GPTs as the blue agents.

• Partially co-designed SP , IB and IRM schedulers,
which use the same generator as the blue agents, but
with a different seed (meaning they may consider dif-
ferent resources / toolshed locations).

Scn. Objective Shared goal items Agent-specific
1 Selfish Gold, axe, bed
2 Selfish Gem, axe, bridge Rope / Cloth
3 Adversarial Stick, plank, cloth, rope
4 Adversarial Gold, bridge, cloth Rope / Plank

Table 3: The Craft World scenarios.

Red agent
Fully co-designed Not co-designed Partially co-designed

SP IB IRM A* RLτ=0.01 RLτ=0.02 SP IB IRM

SP 1.44 1.17 1.19 1.13 1.31 1.69 1.47 1.27 1.27
IB 1.76 1.44 1.51 1.33 1.48 1.79 1.71 1.57 1.47

Sc
n.

1

IRM 1.71 1.43 1.47 1.52 1.59 1.89 1.75 1.53 1.47
SP 2.78 2.50 2.57 2.61 2.71 3.27 2.96 2.74 2.63
IB 3.17 2.85 2.85 2.91 3.00 3.36 3.05 2.87 2.84

Sc
n.

2

IRM 3.17 2.80 2.80 3.27 3.24 3.54 3.06 2.94 2.92
SP 0.01 -0.68 -0.25 -0.64 -0.50 0.19 -0.04 -0.22 -0.23
IB 0.60 0.00 0.33 -0.63 -0.31 0.50 0.11 0.00 -0.07

Sc
n.

3

IRM 0.32 -0.38 0.02 -0.15 0.03 0.81 0.32 0.10 0.01
SP 0.05 -0.62 -0.59 -0.71 -0.52 0.18 -0.01 -0.32 -0.57
IB 0.60 -0.05 0.10 -0.51 -0.32 0.55 0.42 -0.04 -0.32

Sc
n.

4

IRM 0.48 -0.06 0.02 0.17 0.24 0.93 0.68 0.32 0.01

Table 4: Craft World results, averaged over 100 episodes. The best results are highlighted in bold.

Results

The results for the Craft World experiments are shown in Ta-
ble 4. In the selfish scenarios (1 and 2), the reported score is
the mean number of goal items crafted by the blue agent. In
the adversarial scenarios (3 and 4), the reported score is the
mean of blue goals− red goals.

The experiments where the red and blue agents are fully
co-designed represent the best case for IB , since IB knows
which toolshed and resources the other agent will use, while
IRM does not. As expected, IB performed best here, top scor-
ing in 11 out of 12 cases and drawing with IRM in the other.
While IRM underperformed IB in the fully co-designed set-
ting, it easily beat SP in all cases and only marginally under-
performed IB in Scenarios 1 and 2.

At the other end of the spectrum, IRM outperformed IB
in all cases where they were paired with non-co-designed
agents. IB is “surprised” when the red agent collects a re-
source or uses a toolshed that is not available to itself. While
IRM is also unable to use these resources, it is able to antici-
pate that the red agent may use them. Intuitively, this under-
standing ought to be especially important in the adversarial
scenarios, and IRM did in fact win by large margins there.

The partially co-designed case lies somewhere in the mid-
dle; sometimes IB’s assumptions about the red agent’s GPTs
are correct, allowing it exploit knowledge that is unavailable
to IRM , while at other times it makes incorrect assumptions
and is unable to predict the red agent’s behaviour. While this
situation does not favour either agent, IRM was clearly the
stronger performer, winning in 10 out of 12 cases and draw-
ing with IB in another.

Overall, while IB outperforms IRM when paired with fully
co-designed agents, IRM performs better with agents that are
not or only partially co-designed. Moreover, as we noted
earlier, SP is arguably a fairer baseline in practical settings
(where the GPTs cannot easily be expanded to accommodate
IB). Since IRM beat SP in all cases, IRM ’s advantage over
IB is likely to be even greater in practice.

6 Discussion and Conclusion
In this paper we introduced IRM , a new MCTS-based
intention-aware scheduler for BDI agents that uses reward
machines derived from declarative task specifications to pre-
dict the behaviour of other agents. Unlike previous ap-
proaches, IRM does not assume that the behaviour of other
agents will be similar to its own. In our experiments, this
allowed IRM to act more safely in the Office World task,
while in Craft World it outperformed the state-of-the-art IB
scheduler for all paired agents except those based on fully
co-designed GPTs.

In addition to the work on intention scheduling mentioned
in the introduction, our approach also has some similarities
to agents that combine MCTS with reinforcement learning,
especially those for multiplayer games such as Go [Gelly
and Silver, 2008; Silver et al., 2016]. However IRM mod-
els the tasks of the other agents in its environment declar-
atively, which makes it easy to adapt an IRM -based BDI
agent when the goals of the other agents change. The work
of Illanes et al.’s [2020] on combining hierarchical RL with
symbolic planning is also somewhat related to our approach,
as its notion of “final-state goal tasks” is reminiscent of the
way in which we combine multiple reward machines, where
the agent only receives a payoff once all tasks are complete.
However, their work focuses on single agent tasks, and the
agent’s low-level behaviour is unconstrained.

Acknowledgments
This work was supported in part by the National Natural Sci-
ence Foundation of China (61906169).

References
[Andreas et al., 2017] Jacob Andreas, Dan Klein, and

Sergey Levine. Modular multitask reinforcement learning
with policy sketches. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML 2017),
pages 166–175. PMLR, 2017.

[Broekens et al., 2010] Joost Broekens, Maaike Harbers,
Koen V. Hindriks, Karel van den Bosch, Catholijn M.

Jonker, and John-Jules Ch. Meyer. Do you get it? user-
evaluated explainable BDI agents. In Proceedings of the
8th German Conference on Multiagent System Technolo-
gies (MATES 2010), volume 6251 of LNCS, pages 28–39.
Springer, 2010.

[Camacho et al., 2019] Alberto Camacho, Rodrigo
Toro Icarte, Toryn Q. Klassen, Richard Valenzano,
and Sheila A. McIlraith. LTL and beyond: Formal lan-
guages for reward function specification in reinforcement
learning. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI 2019), pages
6065–6073. IJCAI, 2019.

[Dann et al., 2020] Michael Dann, John Thangarajah, Yuan
Yao, and Brian Logan. Intention-aware multiagent
scheduling. In Proceedings of the 19th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), pages 285–293. IFAAMAS, 2020.

[Dann et al., 2021] Michael Dann, Yuan Yao, Brian Logan,
and John Thangarajah. Multi-agent intention progression
with black box agents. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2021). IJCAI, 2021.

[de Silva et al., 2020] Lavindra de Silva, Felipe Meneguzzi,
and Brian Logan. BDI agent architectures: A survey. In
Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI 2020). IJCAI, 2020.

[Gelly and Silver, 2008] Sylvain Gelly and David Silver.
Achieving master level play in 9 x 9 computer go. In
Proceedings of the Twenty-Third AAAI Conference on Ar-
tificial Intelligence (AAAI-08), pages 1537–1540. AAAI
Press, 2008.

[Illanes et al., 2020] León Illanes, Xi Yan, Rodrigo Toro
Icarte, and Sheila A McIlraith. Symbolic plans as high-
level instructions for reinforcement learning. In Pro-
ceedings of the Thirtieth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2020), pages
540–550. AAAI Press, 2020.

[Logan et al., 2017] Brian Logan, John Thangarajah, and
Neil Yorke-Smith. Progressing intention progresson: A
call for a goal-plan tree contest. In Proceedings of the 16th
International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2017), pages 768–772. IFAA-
MAS, 2017.

[Norling and Ritter, 2004] Emma Norling and Frank E. Rit-
ter. Towards supporting psychologically plausible variabil-
ity in agent-based human modelling. In Proceedings of the
3rd International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2004), pages 758–765.
IEEE Computer Society, 2004.

[Rao and Georgeff, 1992] Anand S. Rao and Michael P.
Georgeff. An abstract architecture for rational agents. In
Proceedings of the 3rd International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR
1992), pages 439–449. Morgan Kaufmann, 1992.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-

che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[Thangarajah and Padgham, 2011] John Thangarajah and
Lin Padgham. Computationally effective reasoning about
goal interactions. Journal of Automated Reasoning,
47(1):17–56, 2011.

[Thangarajah et al., 2003] John Thangarajah, Lin Padgham,
and Michael Winikoff. Detecting & avoiding interference
between goals in intelligent agents. In Proceedings of
the 18th International Joint Conference on Artificial In-
telligence (IJCAI-03), pages 721–726. Morgan Kaufmann,
2003.

[Toro Icarte et al., 2018] Rodrigo Toro Icarte, Toryn
Klassen, Richard Valenzano, and Sheila McIlraith. Using
reward machines for high-level task specification and de-
composition in reinforcement learning. In Proceedings of
the 35th International Conference on Machine Learning
(ICML 2018), pages 2107–2116. PMLR, 2018.

[Waters et al., 2014] Max Waters, Lin Padgham, and Sebas-
tian Sardiña. Evaluating coverage based intention selec-
tion. In Proceedings of the 13th International Conference
on Autonomous Agents and Multi-agent Systems (AAMAS
2014), pages 957–964. IFAAMAS, 2014.

[Waters et al., 2015] Max Waters, Lin Padgham, and Sebas-
tian Sardiña. Improving domain-independent intention se-
lection in BDI systems. Autonomous Agents and Multi-
Agent Systems, 29(4):683–717, 2015.

[Yao and Logan, 2016] Yuan Yao and Brian Logan. Action-
level intention selection for BDI agents. In Proceed-
ings of the 15th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2016), pages
1227–1236. IFAAMAS, 2016.

[Yao et al., 2014] Yuan Yao, Brian Logan, and John
Thangarajah. SP-MCTS-based intention scheduling for
BDI agents. In Proceedings of the 21st European Confer-
ence on Artificial Intelligence (ECAI-2014), pages 1133–
1134. ECCAI, IOS Press, 2014.

[Yao et al., 2016a] Yuan Yao, Lavindra de Silva, and Brian
Logan. Reasoning about the executability of goal-plan
trees. In Proceedings of the 4th International Workshop
on Engineering Multi-Agent Systems (EMAS 2016), vol-
ume 10093 of LNCS, pages 176–191. Springer, 2016.

[Yao et al., 2016b] Yuan Yao, Brian Logan, and John
Thangarajah. Robust execution of BDI agent programs by
exploiting synergies between intentions. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI-16), pages 2558–2565. AAAI Press, 2016.

	Introduction
	BDI Agents
	Multi-Agent Intention Progression with Reward Machines
	Intention-Aware Scheduling with RMs
	Evaluation
	Experimental Setup
	Office World Experiments
	Results

	Craft World Experiments
	Results

	Discussion and Conclusion

