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Abstract. In this paper, we describe a prototype multi-agent-based
system for cleaning food production facilities developed as part of the
RoboClean project. The prototype system is based on domestic robot
vacuum cleaners equipped with IR allergen sensors and Amazon echo
dot speech interfaces. The robots are controlled by a multi-agent system
implemented in Jason, which handles (ad hoc) task allocation and robot
coordination. We briefly describe the architecture of the RoboClean sys-
tem, how coordination is achieved using the contract net protocol, and
the implementation of the current prototype.

1 Introduction

Hygiene and the avoidance of cross contamination, e.g., by allergens, is very
important in food manufacturing. Production and/or specialist cleaning staff
typically spend a significant amount of time cleaning food production facilities,
following industry standards such as those specified by the British Retail Consor-
tium [3]. This has a significant, and increasing impact on employee productivity
and costs. The drive by manufacturers to provide more variety and alternative
formulations (e.g., gluten free foods) increases the amount of time that must be
spent cleaning, and the potential for accidents. For example, data from the UK
Food Standards Agency shows that the number of food safety events relating to
allergens approximately doubled between 2014/15 and 2017/18 [5].

One possible way of reducing the amount of time staff spend on cleaning is
to use robots to automate part of the cleaning task. Cleaning robots, e.g., vac-
uum cleaners, are becoming increasingly common in domestic environments and
are starting to appear in industrial settings. However, such robots are typically
designed to operate in isolation rather than to assist human cleaners, and pro-
vide limited support for the integration of ad hoc cleaning tasks into a cleaning
schedule. In addition, operation typically involves either physical contact with
the robot (to push a button) or a touchscreen (e.g., app-based interfaces) which
may be undesirable for reasons of hygiene. Finally, such systems are not designed
for a food production environment, where the type of material being removed
may be significant, e.g., an allergen.



In this paper, we describe a prototype multi-agent-based system for cleaning
food production facilities developed as part of the RoboClean project. The aim
of the RoboClean project to investigate the potential of human-robot and multi-
robot teams equipped with speech interfaces and allergen sensing capabilities for
the cleaning of food production facilities. The RoboClean prototype system is
based on domestic robot vacuum cleaners equipped with infrared (IR) allergen
sensors and Amazon echo dot speech interfaces. The robots are controlled by
a multi-agent system implemented in Jason [I], which handles (ad hoc) task
allocation and robot coordination. We briefly describe the architecture of the
RoboClean system, how coordination is achieved using the contract net protocol,
and the implementation of the current prototype.

The remainder of the paper is organised as follows. In Section [2] we present
the architecture of the RoboClean system. In Section [3] we briefly describe the
implementation of current prototype and illustrate the operation of the task al-
location system with an example. We conclude in Section 4 with some directions
for future work.

2 The RoboClean Architecture

The focus of the RoboClean project is on human-robot interaction, flexible team-
work, and allergen monitoring rather than the practical issues related to cleaning
in a food production facility, which may involve cleaning large amounts of semi-
liquid material. For simplicity, we assume the materials to be cleaned are dry
powders, e.g., flours, spice blends, tea, coffee etc., possibly containing allergens,
such as gluten or peanut flour, and the prototype system is based on domestic
robot vacuum cleaners (Neato Botvac D7 ConnectedED augmented with an near-
infrared allergen sensor (NIRONE S2.0) and a basic speech interface (Amazon
Echo Dot). Similarly, for ease of implementation, the agents run on a standard
PC and communicate with the robots via an API, rather than on embedded
processors on the robot vacuum cleaners. While simple and cheap, the use of off-
the-shelf domestic vacuum cleaners introduces a number of challenges as detailed
below. The RoboClean architecture is shown in Figure

2.1 Food Production Facility

A food production facility is assumed to have a variable number of cleaning
robots, possibly of different types. Depending on the cleaning cycle and process,
different types of robots may be used at different times (in the prototype system,
all robots are of the same type, but the architecture does not rely on this), and
robots may have to be taken out of service for maintenance, e.g., emptying
the dust container. The production facility also defines a set of ‘cleaning zones’
specifying areas to be cleaned, for example, the area in front of a particular

3 https://www.neatorobotics.com/gb/robot-vacuum/botvac-connected-series/
botvac-d7-connected/


https://www.neatorobotics.com/gb/robot-vacuum/botvac-connected-series/botvac-d7-connected/
https://www.neatorobotics.com/gb/robot-vacuum/botvac-connected-series/botvac-d7-connected/

Food production facility MAS
Robot . Robot
.4 agent | agent

T la—T ] —
‘ _______ ——-»| Neato APl [« T X t
-
L - \\A
T Agent Robot
« Zone allocator agent
information

"4 ¥
Speech
interface

\

\

\

Task queue [« Task GUI

Fig. 1. The RoboClean architecture

machine or alongside a production line. This zone information is used both by
the speech interface to identify the location to be cleaned, e.g., “clean next to the
coffee roaster”, and by the MAS during task allocation. A zone is a three-tuple
and is defined as:

ID the identifier of the zone;
X, Y the coordinates of the top left hand corner of the zone; and
X1, Y1 the coordinates of the bottom right hand corner of the zone.

Zones can overlap and be nested one inside another. (The zone definition is based
on that used by the Neato APIL.)

Regular cleaning of the facility is specified as a set of cleaning tasks. A task
is four-tuple defined as follows:

ID the identifier of the the task;

Zone the name of the zone to be cleaned;

Deadline the time by which the task should be completed; and

Priority the importance of the task is relative to other tasks (smaller numbers
indicate a higher priority).

Tasks are specified using a simple GUI and added to a task queue.

The Neato Botvac D7 robots are internet connected robotic vacuum cleaners
which can be controlled using mobile devices, e.g., smartphones, and other smart
home devices such as Amazon Alexa and Google Home. The robots are battery
powered, and recharge at a base station. Each robot is approximately 30cm x
30cm and weighs 3.5 kilograms. It has a front bumper that detects collisions and
a top mounted laser used for both mapping and navigation. In the RoboClean
system, each robot also has a speech interface which can be used to query and
control the robot and the robot team, and an IR sensor. (In the interests of



simplicity, the IR sensors are not shown; they are currently not integrated with
the API and communicate indirectly with the MAS via a bluetooth connectionﬂ)
The speech interface can be used to give the robot (or a robot team) ad hoc
cleaning tasks, which are added to the task queue.

2.2 Multi-Agent System

The multi-agent system consists of an Allocator Agent and a variable number
of Robot Agents. The allocator agent has two main roles: it monitors the Neato
API (described below) and, when a cleaning robot comes online, it allocates
a robot agent to control the robot (creating the robot agent if necessary); it
also monitors the task queue and dispatches new tasks to robot agents. Each
robot agent is responsible for monitoring and controlling a cleaning robot. The
agent periodically polls its allocated robot to check its connection, battery and
cleaning status, and issues commands as necessary to perform cleaning tasks.
Robot agents are also responsible for task allocation and task achievement.

Tasks are allocated using a version of the contract net protocol [9]. In the
contract net protocol, each task has a manager who announces the task to other
agents and requests bids, and then allocates an agent to perform the task. All
agents able to perform the task (including the task manager itself) send a bid
to the manager containing the agent’s estimate of how long it would take it
to perform the task, taking into account its current location relative to the
task, charge level, dust container capacity and the tasks to which it is already
committed. When all eligible agents have returned bids, the manager allocates
the task to the agent that can perform the task in the least time. That agent
then adds the task to its task list. The task will either be performed immediately
(if the robot controlled by allocated agent is currently idle) or scheduled for
future execution (e.g., after currently executing task(s) with earlier deadlines).
When the task has been completed, the agent allocated the task notifies the
task manager, which in turn notifies the allocator agent to update the interface.
In the RoboClean architecture, when a task is added to the system task queue,
e.g., an ad hoc task requested by a member of the production staff via the
speech interface, the allocator agent randomly selects a robot agent to act as
task manager. The selected robot agent remains responsible for the task until
notified of its completion. If the allocated agent is unable to complete the task,
e.g., because the robot it is controlling goes offline, it notifies the task managers
of all its allocated tasks so that the tasks can be re-advertised and allocated to
other robot agents. Once the task managers have been notified, the robot agent
then notifies the allocator agent that the robot that it is controlling is offline,
and its status is changed to ‘unallocated’.

2.3 Neato API

The Neato API forms the interface between the MAS and the cleaning robots.
The Neato robots expose only a high-level webservice/IoT API, primarily in-

* For details of the sensor, see [§].



tended for developing apps (e.g., for mobile devices). The API allows basic in-
formation about the robot to be queried, e.g., whether it is cleaning or charging
at the base station, battery level etc., and provides some high-level commands,
e.g., start/stop, clean zone X, etc. However, using the API, it is not possible
to obtain sensor or position information from the robot, or execute low-level
actions, e.g., moving to an arbitrary location. After cleaning a zone, the robot
will return to the base station before starting to clean the next zone. These re-
strictions impact the coordination and control possible in the current prototype
but not the overall architecture which is capable of finer coordination with more
controllable robots.

3 RoboClean Prototype

To facilitate development and testing of the agent coordination, in the current
prototype implementation of the RoboClean architecture, the Neato robots and
Neato API are realised using a simulator. The simulator models the dynamics
of the Neato robot vacuum cleaners, and provides the same query and control
functionality as the Neato API. Similarly, the speech interface is modelled using
a process that randomly generates ad hoc tasks which are added to the task
queue. The architecture of the prototype is shown in Figure [2] and each of the
components is discussed in detail below.
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Fig. 2. The RoboClean prototype
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3.1 Simulator

The environment is represented by a grid of cells, where each cell is 33cm (i.e.,
the size of a robot). The layout of the environment and the number of robots to
be simulated is specified in a text file. The first line of the file contains the key
simulation parameters, and the remaining lines specify the contents of each cell.
The simulation parameters are:



Dimensions the size of the environment in x and y (in cells);
Robot Count the number of robots; and
Simulation Speed the time between each simulation step in milliseconds.

The contents of each cell are specified using a simple textual encoding of size
x X y where:

E represents an empty space;
O represents an obstacle (a space that a robot cannot occupy); and
B represents base station.

The number of base stations must be the same as the number of robots in the
simulation and each robot is initially located at a base station to which it returns
to recharge. In the simulator interface, robots are shown as blue circles, empty
cells in light grey, obstacles in dark grey and base stations in yellow. During the
simulation, the simulator randomly generates ‘dirt’ in empty cells, indicated by
green cells. For example, the environment specified below is depicted in Figure
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A more realistic environment, based on a food production facility is shown in
Figure [4} the dark grey curved lines represent the conveyor belts and processing
stations where food is prepared.

As explained in Section [3.3]below, the task allocation algorithm assumes that
the travel and cleaning times for a given zone are available. In the prototype,
this information is computed by the simulator. When Neato robot receives a
command from the Neato API to clean a zone, it uses its map of the environment
to compute the shortest route to the top left corner of the zone. It then turns on
the vacuum and begins cleaning the zone in a ‘reverse S’ pattern. That is, starting
at the top left, it cleans the top row of cells left to right before moving down a
row and cleaning the second row from the right to left and so on, continuing until
the entire zone has been cleaned. The robots move more slowly when cleaning
than when travelling between the base station and zone. The simulator mimics
the behaviour of the physical robots, allowing relative travel and cleaning times
to be calculated. The travel time is proportional to the minimum number of cells
that must be traversed by the robot to reach its base station plus the number of
cells from the base station to the first cell of the zone to be cleaned. The time
required to clean a zone is assumed to be the size of zone times 10, as the Neato
is approximately 10 times slower when the vacuum is engaged.
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Fig. 3. Example of simulation environment

3.2 Simulator Interface

The simulator interface manages the connection between the agents and the
simulated environment. It also provides a simple interface to the task queue
and the zone information defining the areas of the simulated environment that
may be cleaned. The initial list of scheduled tasks can be updated at run time,
simulating the effect of ad hoc tasks from the speech interface. The simulator
interface GUI is shown in Figure [5| The panel on the left contains the zone
definitions, and the panel on the right the current task queue. As explained
above, each task is specified by a zone to be cleaned, a deadline and a priority.
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Fig. 4. An example food production facility, with robots shown at their base stations.

3.3 Multi-Agent System

This allocator agent and robot agents are implemented in Jason [I]. The contract
net implementation makes use of the Jason contract net library. When an agent
1 receives an announcement of a task j, they compute a bid, i.e., the time it will
take to complete the task, using the the equation below:

Bidl — 00 if busy
CT ) (MoveTime? + CleanTime?) * AllocatedT asks; otherwise
K3 K3

where MoveTime is the amount of time it would take to move to the zone to be
cleaned and CleanT'ime is the amount of time it would take to clean the zone.
The total time required for zone j is weighted by the number of tasks already
allocated to agent 4; this approximates the time required to return to the base
station after cleaning the zone, recharging time etc.. While simplistic, this ap-
proach maximises the number of robots actively working on tasks (which users
studies suggested was preferred by production staff, even if the resulting alloca-
tion is not optimal). The order the tasks are allocated is firstly by priority, then
secondly by deadline. To ensure that the agents are portable between different
robots, environments, and tasks we assume that that times are available from
the robot or the robot API (in the prototype, the simulation interface).
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Fig. 5. The Intermediate Manager program with Zones and Tasks that will be used in
our examples.

3.4 Example

As an example, we will show how the tasks are allocated when the task list is
sent in two different scenarios. The first scenario is when the system is in the
initial phase when no tasks have been allocated. The second scenario is when
some, but not all, tasks that have been allocated have been completed. Before
we can allocate the tasks we need to know what order they will be processed in.
One possible ordering, where the first to be processed is at the top, is:

Task 4 Clean Zone 3, by 01:00 with a priority 1
Task 5 Clean Zone 2, by 06:00 with a priority 1
Task 1 Clean Zone 1, by 12:00 with a priority 1
Task 2 Clean Zone 2, by 12:00 with a priority 1
Task 3 Clean Zone 4, by 12:00 with a priority 4

The order in which tasks 1 and 2 are processed may be swapped, since they
both have the same deadline and the same priority. The order in which they
are processed depends on which task was received first by the agents. Below we
assume that the tasks are received in the order given by the list.

Initial Allocation We start with an example of task allocation in the initial
start-up environment, where there are no previous tasks. The first task to allocate
will be Task 4, as this task has the highest priority and the earliest deadline,
making it the most important to allocate.

The first set of bids will come in from the three agents for the first task to
be allocated (Task 4).

bidi} =0,
bid4s =0, (1)

bid4s =0,



All the bids are 0, as no task as been allocated to any of the agents. The
bids being weighted against the number of previous tasks forces all the agents
to place the best bid. The task can then be assigned to any of the agents, for
our example we will assume that it has been assigned to Agent 1.

Task 5 is the next task to be allocated. Agent 1 will place a bid which is non
zero, as this agent has been allocated a task. Agents 2 and 3 both place the best
bids. For out example we will assume that Agent 2 has been allocated Task 5.
Similarly for the next task, Task 1, Agent 3 will place the best bid, as this agent
is the only one not allocated a task.

At this point the allocated tasks are:

Agent 1 Task 4
Agent 2 Task 5
Agent 3 Task 1

Task 2 is the next task to be allocated. The bids from the agents will now
not be 0, as they all have at least one task allocated to them. For Task 2 the
bids from the 3 agents will be shown in Equation [2| which is Equation [3.3| with
variables solved for our example.

bid? = (14 + 2560) * 1,
bid3 = (24 + 2560) * 1, 2)
bid42 = (58 + 2560) * 1,

Agent 1 has produced the lowest bid as it is closest to the starting point of

zone 2. Task 2 will be allocated to Agent 1. The final task to be allocated is
Task 3. The bids for Task 3 will be:

bid3 = (7 + 2880) * 2,
bidks = (24 + 2880) * 1, (3)
bid43 = (63 + 2880) * 1,

While normally Agent 1 would be assigned Task 3, as it is the closest, the
agent also has the most tasks allocated. The next closest is Agent 2, which has
also put in the best bid for the task. The final allocation of tasks is therefore:

Agent 1 Task 4, Task 2
Agent 2 Task 5, Task 3
Agent 3 Task 1

Additional Task Allocation The aim of the second example is to show how
the agents and the contract net cope when presented with an additional list of
cleaning tasks when they are currently working on a previously allocated set of
tasks.



Fig. 6. Factory simulation environment, where the simulated agents are currently mov-
ing around the environment working on cleaning tasks.

At this point in our example the agents will have sent their robot representa-
tive off to achieve one of the cleaning tasks that they have been allocated. The
human operator in the food factory has noticed that there has been a spillage on
the factory floor and have requested that another two tasks need to be allocated:

Task 1 Clean Zone 4, by 12:00 with a priority 1
Task 2 Clean Zone 3, by 12:00 with a priority 1

Both the tasks requested have the same deadline, they also have the same
priority. Therefore the task that will be allocated first will the task that was
received by the manager first. In this example we will assume that Task 1 is the
task that will be allocated first.

We will assume that the state of the environment is the same as presented
in Figure [6] The main feature to note is that no simulated robot is currently at
the base station and all the agents are either working on one of their tasks or
are moving back towards their base station. The agents are assumed to have the
current tasks that still need to be completed:

Agent 1 Task 2
Agent 2 Task 3
Agent 3 All tasks completed

Each agent has completed a single task from the tasks that were allocated
in the first example. Agents 1 and 2’s robots are currently working on the next
task, while Agent 3’s robot heads back towards the base station.



The allocation for Task 1 is simple to calculate when the manager requests
all the bids. Agent 3 will be the only agent to return the best bid of 0, since it is
the only agent that has no tasks currently assigned to it. Task 1 will be assigned
to Agent 3.

Agent 1 Task 2
Agent 2 Task 3
Agent 3 Task 1

Agent 3 now has a task to complete, but it is unable to send the robot to
start the task until the robot has returned to the base station. The manager will
move on to assigning Task 2. The bids for this task will be:

bidy3 = (34 + 2560) * 1,
bidh2 = (48 4+ 2560) * 1, (4)
bid3 = (83 + 2560) * 1,

At this point it is worth noting that the simulation calculates the time needed
to get back to the base station as well as the time needed to get to the zone to
clean. In simulation, Task 2 would be assigned to Agent 2 as the base station is
the closest to Zone 30

Therefore at this point the current tasks to complete for the agents in the
simulation are:

Agent 1 Task 4, Task 2
Agent 2 Task b
Agent 3 Task 1

All the tasks have been allocated. Given the speed at which the tasks can be
allocated, we can assume that the state of the world has not changed between the
start of allocation and the end of allocation. When the robot Agent 3 represents
returns to the base station, the agent will be able to send the newly assigned
task to its robot.

4 Discussion

We have presented a prototype allergen aware factory cleaning system, which is
part of a larger RoboClean project that aims to facilitate effective and efficient
cleaning through multi-agent and human-robot interactions. OQur prototype sys-
tem allows a queue of cleaning tasks to be distributed among a number of robots
using the contract net protocol [9]. The contract net protocol was chosen due

® When the prototype is implemented on real Neato robots, it will only be able calcu-
late the move time based on the time it would take to move from the base station,
as the Neato does not reveal its location through the API.



to its simplicity and the relatively small amount of information and commu-
nication required. There are a number of other task assignment protocols that
extend contract nets, such as Alliance [7] and M+ [2], and scheduling approaches
that focus on either minimising the number of late jobs [4] or taking, e.g., the
battery life of the robot into consideration [6]. However, given the limited infor-
mation available via the Neato API, we believe the contract net is a reasonable
approach.

In future work, we plan to interface the MAS to the Neato API and hence
to control the physical robots. This will provide a platform for user studies
investigating human-robot interaction to be explored, e.g., in which situations
does a human view themselves as interacting with a single robot and in which
situations do they see themselves interacting with the team of robots through
the robot being addressed. Another area of future work would be investigate
alternative robot platforms which allow finer-grained control. This would allow
a better allocation of tasks, e.g., in terms of minimising cleaning time, or ensure
all tasks are completed before the deadline.
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