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Abstract— Distributed simulation has emerged as an important instrument for studying large-scale complex systems. 

Such systems inherently consist of a large number of components, which operate in a large shared state space interacting 
with it in highly dynamic and unpredictable ways.  Optimising access to the shared state space is crucial for achieving 
efficient simulation executions.  Data accesses may take two forms: locating data according to a set of attribute value 
ranges (Range query) or locating a particular state variable from the given identifier (ID query and update).  This paper 
proposes two alternative routing approaches, namely the address-based approach, which locates data according to their 
address information, and the range-based approach, whose operation is based on looking up attribute value range infor-
mation along the paths to the destinations. The two algorithms are discussed and analysed in the context of PDES-MAS, a 
framework for the distributed simulation of multi-agent systems, which uses a hierarchical infrastructure to manage the 
shared state space.  The paper introduces a generic meta-simulation framework which is used to perform a quantitative 
comparative analysis of the proposed algorithms under various circumstances.   
 

Index Terms— Multi Agent Systems, Complex Systems, Distributed Simulation, Data Management, Range Query 
 

I. INTRODUCTION  

 HE last decade has witnessed an explosion of interest in complex systems, which involve dy-

namic and unpredictable interactions between large numbers of components including software, 

hardware devices (such as sensors), and social entities (people or collective bodies). Examples of 

such systems range from traditional embedded systems, to systems controlling critical infrastruc-

tures, such as defence, energy, health, transport and telecommunications, to biological systems, 

to business applications with decision-making capabilities, to social systems and services, such 

as e-government, e-learning etc. The complexity of such systems renders simulation modelling 

the only viable method to study their properties and analyse their emergent behaviour. Multi-

agent systems (MAS) have emerged as a particularly suitable paradigm for modelling complex 

systems. When embedded in a real system, a MAS is itself a complex system whose properties 

T
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and emergent behaviour have also to be analysed via simulation [7][14].  

The application of agent-based simulation to ever more complex problems has placed it in the 

highly computation intensive world with computational requirements far exceeding the memory 

and performance capabilities of conventional sequential computer systems.  As a result, parallel 

and distributed simulation emerges as a particularly promising and viable approach to alleviate 

the simulation bottleneck in the design and analysis of large, complex, agent-based systems. 

Amongst the most influential of these approaches, the Logical Process Paradigm seeks to di-

vide the simulation model into a network of concurrent Logical Processes (LPs), each of which 

models some object(s) or process(es) in the simulated system. Each LP maintains and processes 

a portion of the state space of the system and state changes are modelled as time-stamped events 

in the simulation [10].  

In conventional distributed simulations, the shared state is typically small and the processes in-

teract with each other in a small number of well-defined ways. The topology of the simulation is 

determined by the topology of the simulated system and its decomposition into processes, and is 

largely static. However, in the case of agent-based systems, which operate in complex environ-

ments and interact with it in highly dynamic and unpredictable patterns, it is often difficult to 

determine an appropriate simulation topology a priori. In such systems there is a very large set of 

shared state variables which could, in principle, be accessed or updated by the processes in the 

model. Encapsulating the shared state in a single process (i.e., via some centralised scheme) in-

troduces a bottleneck, while distributing it all across the LPs (decentralised, event driven 

scheme) will typically result in frequent all-to-all communication and broadcasting.  

In [21] we have proposed an approach to manage the shared data in distributed simulations of 

multi-agent systems (MAS). The approach is based on the notion of Spheres of Influence (SoI) 
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and uses a hierarchical simulation infrastructure to dynamically decompose and distribute the 

shared state. This framework has been realised in the context of PDES-MAS2, a system for the 

distributed simulation of multi-agent systems.  Management of shared data in distributed simula-

tions needs to address two problems, namely data distribution and data accessing. In [27] we 

addressed the first problem and described data distribution algorithms for the PDES-MAS 

framework; in [18][19] we discussed synchronisation issues that arise from such  distributions. 

In this paper, we focus on the second problem of data access. Data accesses target both indi-

vidual data items (referred to as ID queries) and selected data items overlapping given query 

windows (referred to as Range queries). This is a challenging issue, particularly when both the 

value and the physical distribution of data items are dynamic. The physical distribution of data 

items refers to the assignment of data items to LPs, which are running in separate threads and 

could thus be distributed physically over a set of machines. Value distribution, in contrast, char-

acterises the content of data items. 

Typically two basic criteria to locate data items can be identified, namely the physical location 

of individual data items and their attribute value. This paper describes two new candidate algo-

rithms for data accessing in the context of the PDES-MAS framework, the address-based and the 

range-based routing, each relying mainly on one of the two aforementioned respective criteria. 

Data access approaches considerably influence the efficiency of simulation execution and con-

tribute to the complexity of system design. This paper first gives a qualitative comparison of the 

proposed algorithms and then provides a quantitative analysis of the dynamics of the two solu-

tions. The performance of the candidate algorithms has been analysed with respect to the behav-

iour of the simulated system as well as the characteristics of the simulation infrastructure. Em-

phasis has been given to the problem of dynamic range queries. The experimental framework 

 
2 http://www.cs.bham.ac.uk/research/pdesmas 
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used can provide a substantial reference for system designers to address similar problems.  

The two algorithms were first outlined in [41] where an initial evaluation was also presented. 

This paper presents a more detailed description of the algorithms and an extended set of results 

with an in-depth analysis. The rest of the paper is organized as follows: the PDES-MAS frame-

work is introduced in Section II. Section III discusses the alternative approaches to data access-

ing. Section IV provides a qualitative comparison of the proposed routing approaches. Section V 

describes the meta-simulation model which has been developed to study the dynamics of the 

routing approaches. Section VI presents the benchmark experiments and results. Related work is 

briefed in Section VII.  Section VIII concludes the paper with a summary and ideas for future 

work. 

II. THE PDES-MAS FRAMEWORK 

PDES-MAS adopts a standard discrete event simulation approach with optimistic synchroniza-

tion [21].  When constructing multi-agent systems using the framework, an MAS is modelled as 

a network of LPs (Fig. 1).  In particular, each agent is modelled as an Agent Logical Process 

(ALP).  An ALP has both private state and shared state. The private state is maintained within 

the ALP, while the shared state can be accessed (read or updated) by other ALPs in the model. 

Changes in the state of an ALP that may have a causal impact on other ALPs are referred to as 

external events and are represented by a time-stamped operation on the shared state.  
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Fig. 1. Overview of the PDES-MAS framework 
 

The shared state is modelled as a set of Shared State Variables (SSVs), each of which is a tuple 

of the form <SSV ID, attribute type, value, timestamp>. In PDES-MAS, the shared state is main-

tained by a tree-structured set of additional logical processes, Communication Logical Processes 

(CLP), which cluster agent models and shared state according to the agents’ SoIs [21]. As the 

access patterns on the shared state change, so does the configuration of the tree and the distribu-

tion of state (i.e., its allocation to CLPs) to reflect the logical topology of the model.  

 Redistribution of shared state can be achieved in a number of ways, such as by creat-

ing/deleting CLPs, by migrating ALPs through the tree, or by migrating state between CLPs. For 

the purposes of this paper, we choose to use a fixed tree of CLPs and move SSVs through the 

tree to achieve redistribution. SSVs are constantly moved closer to the ALPs that access them 

most frequently, reducing the total access cost and thus contributing to the scalability of the 

framework [27]. The framework does not make use of proxies and only one instance of an SSV 

is present in the tree at any particular moment. ALPs always link to the leaf CLP nodes in the 

tree.  

The CLP tree provides common services to the ALPs, which includes: (a) facilitating the con-

struction of the distributed simulation; (b) clustering and interoperating the ALPs; (c) managing 

shared data and balancing load incurred by accessing the shared state; and (d) facilitating syn-
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chronization of the ALPs.  

 Fig. 2 illustrates the relationship between an ALP and the CLP tree. The operation of the CLP 

tree remains transparent to the ALPs during the simulation. The PDES-MAS framework pro-

vides a software library to the ALPs to interact with the CLP tree through two interface modules, 

referred to as SimulationAmbassador and AgentAmbassador. An ALP issues requests to access 

shared state variables through the SimulationAmassador module which forwards the requests to 

the parent (or the server) CLP. If the required SSV is not held locally, the server CLP passes the 

request to its parent CLP to deal with the request. The return data and control messages (i.e., 

rollback) are conveyed to the ALP via its AgentAmbassador module.  

Communication 
Logical Process

Agent
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Agent
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Port
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or control
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Fig. 2. Relationship between the CLP Tree (Hierarchical Simulation Infrastructure) and ALPs 

 

Fig. 3 gives a schematic view of a CLP, which interacts with other LPs in the system via ports. 

Ports link the individual LPs together to form the overall PDES-MAS simulation system. In this 

paper, the incoming port of a CLP is referred to as the one from which a request on accessing 

SSV is received. Each CLP is also a router responsible for forwarding access requests to the des-

tination CLP(s) that host the target data, and forwarding is via the outgoing ports.   
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The port is specially designed to maintain the distribution of the values of SSVs in the value 

space3 classified by the types of SSVs. The attribute value range denotes a certain range of the 

values of a set of SSVs associated with a particular attribute (or a set of attributes). The “extent” 

covered by the attribute value range may also vary with different routing algorithms. The distri-

bution concerns SSVs in the local CLP and/or SSVs in remote CLPs, for instance the overall 

system beyond a port or only the direct neighbours (parent and/or children nodes if any) to the 

CLP through a port (i.e., as in Figures 5 and 8). 

Communication 
Logical Process

Port  
Fig. 3. Communication Logical Process and Ports 

 

The distribution of the values gives a panorama of the status of SSVs in the system. No matter 

what resolution and extent are chosen for an attribute value range, it should always correctly re-

flect the status of SSVs and can be refreshed once the status changes. More details of attribute 

value range are available in Section III. 

III. DATA ACCESS IN PDES-MAS 

Routing approaches are needed for ALPs and CLPs to locate (a) SSVs according to the attrib-

ute value ranges (range query) and/or (b) a particular SSV from the given ID (ID query and up-

 
3 For example, we define “x-position” in an extent [0, 100]. Given 100 SSVs of x-position, the values of these SSVs may distribute evenly 
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date). The two types of locating differ from each other significantly. A range query searches for 

a group of SSVs based on the specified common attributes and constraints, and the targets tend 

to differ in each query. This is similar to multicast on dynamic groups. In contrast, ID query aims 

to locate a unique SSV given its ID, and therefore is closer to a unicast operation. 

Routing access requests to SSVs can be performed via either their location information in the 

tree or the attribute value range information maintained at the ports of the CLPs. SSVs may be 

moved between CLPs, but there are no multiple copies of a single SSV in the overall system. 

The status of an SSV can be altered by updating and load management [27]. An update may 

change the value of the SSV, which directly affects the corresponding attribute value range. 

Load management may induce the migration of the SSV to a different location in the CLP tree, 

thus, changing the value ranges at related ports. This immediately influences ID queries on this 

SSV and possibly range queries. 

To facilitate the location of SSVs in the CLP tree, it is helpful to encode4 the tree to identify 

the CLPs. The address of an SSV is defined as the code of the CLP at which it is maintained (the 

CLP is referred to as the host CLP of this SSV, while the SSV is considered local to this CLP). 

When forwarding access requests, a CLP decides through which port to push the access request 

to the destination CLP.  

The fixed architecture of a CLP tree determines that: (a) an SSV can only migrate from a CLP 

to its direct neighbours, and (b) between any ALP and CLP, there exists only one unique path. 

Once the target SSVs are located, the returned values need to be simply propagated along the 

path which the query just traversed in the reverse direction to the source ALP. This section pre-

sents two candidate approaches to route ID and Range queries through the tree of CLPs. The two 

                                                                                                                                                                                           
from 0 to 99, such as (0, 1, …, 99), or concentrate on [50, 51]. 

4 No particular coding scheme is preferred as long as it identifies each CLP uniquely and remains consistent in the simulation. 
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approaches dynamically adapt to different properties of the shared state and the system.  

To store the information efficiently, the overall value range of each SSV type is divided into a 

number of segments. Hence, only one bit per segment is needed to store information about the 

existence of SSVs with values covered by this segment. For example in the case of  a CLP con-

taining a set of SSVs with values listed as: {20, 53, 56, 70, 80, 190, 310, 370} (see Fig. 13), in-

stead of using a simple range description, such as [Min(20), Max(370)], the value space can be 

segmented as Seg1: [0, 100], Seg2: [100, 200], Seg3: [200, 300], Seg4: [300, 400], Seg5: [400, 

500], ....etc.  The approach logs the number of SSVs whose values fall onto each segment. For 

Fig. 4(A), the following segments are defined: {Seg1(5), Seg2(1), Seg3(0), Seg4(2), Seg5(0)}; 

the attribute range is {Seg1∪Seg2∪Seg4}. When an update occurs, even if the value of the up-

dated SSV is beyond the original [Min, Max], the segmented range may not need to change. For 

instance, if the SSV with value 370 is updated to 380, the updated value still falls onto Seg4 

(Fig. 4(B)). The range has to be updated only when there is no SSV having a value in one of the 

segments (narrowing, Fig. 4(C)) or any SSV’s value exceeds all existing segments (expanding, 

Fig. 4(D)). 
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Fig. 4. Segmenting Attribute Value Range 
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A. Address-based Routing 

The address-based routing searches for SSVs according to their addresses, namely their exact 

location (host CLP) in the tree. Fig. 5 illustrates an address-based routing approach, which binds 

the ID of an SSV to its address.  Each server CLP maintains a routing table containing the ad-

dresses of SSVs that have been accessed in the past. The routing table has a hierarchical format 

using attribute IDs as indices. From a particular object attribute’s perspective, the table maintains 

the addresses of CLPs hosting the same type of SSV. The SSV IDs of this type are recorded un-

der the host CLP entry. Furthermore, each CLP stores information about the values of SSVs that 

are hosted by its immediate neighbours. This information is obtained and refreshed when updates 

on those SSVs occur.  

1) Range Query with Address-based Routing 

When an ALP issues a Range query (see example in Fig. 5), its server CLP propagates the re-

quest to all CLPs  which host SSVs of that SSV type (in this example, CLP1 and CLP2). If the 

values of its SSVs are not within the segments covered by the Range query, the neighbours of a 

CLP can stop the query (unless there is another CLP that needs to be reached).  
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Fig. 5. Address-based Routing 
 

The address-based routing algorithm is illustrated in Fig. 6. When a sever CLP receives a range 

query request for accessing SSVs of a particular type, it needs to resolve the addresses of these 

SSVs from its routing table. If the attribute ID associated to the SSVs cannot be found in the ta-

ble, the server CLP will initiate a global search for the SSVs with the designated type in the CLP 

tree. The routing table will then be updated with the returned results, and the current range query 

finishes.  If the attribute ID can be found in the server CLP’s routing table, the range query re-

quest will then be forwarded to the destinations. When the request reaches the CLP next to a des-

tination, the CLP checks the query’s range against the attribute range information about the des-

tination to see whether both ranges overlap. If they don’t overlap, search on the destination CLP 

will be given up. If they overlap, the query will be delivered to the destination CLP, and the re-

sults will be returned to the server CLP. Eventually, the server CLP consolidates results (if any) 

collected from itself and the other destination CLPs, and conveys those to the corresponding 

ALP, and the range query completes. 

2) ID Query with Address-based Routing 

The algorithm for an ID query is straightforward. When an ALP issues an ID query, the server 

CLP locates the destination (if the SSV is not maintained locally) from its routing table and for-

wards the query to the particular host CLP. 
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Fig. 6. An Address-based Routing Algorithm 

 

3) Migration of Shared State Variables 

When an SSV migrates, the change of the SSV’s address immediately affects the ID-to-address 

binding. The routing tables in the server CLPs have to be updated with the new address. A grad-

ual address updating scheme is used to avoid global propagation for updating addresses.  This is 

illustrated in Fig. 7.  The port through which an SSV migrates is recorded in the original host 

CLP, and the CLP becomes the SSV’s correspondence CLP. The map between port and mi-

grated SSVs is looked up as another routing table for searching those SSVs.  When ALPx origi-

nally accessed SSV1, CLPm was SSV1’s original host CLP. Obviously, at that time the query from 

ALPx on SSV1 must be routed to CLPm’s right port along a fixed path (the original path).  

After SSV1 migrates to a new host, from ALPx’s point of view, there are three different cases: 

(1) SSV1 has been pushed further away (Fig. 7(A)), (2) SSV1 has been brought closer to ALPx 

(Fig. 7(B)) or (3) SSV1 has been moved elsewhere (Fig. 7(C)).  For case (1), when a new query 

reaches CLPm, it will be forwarded to CLPm’s direct neighbour beyond its upper port. The for-

warding will be relayed until the new host is found. For case (2), the new host must be an inter-
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mediate node in the original path, and the query will be answered straightforwardly when reach-

ing the host. For case (3), along the original path, the query will pass a correspondence CLPn, 

and then it will be relayed downwards to the new host CLP of SSV1. From the above discussion, 

it is clear that no matter in which new host an SSV locates, the query will only travel along the 

unique path between the ALP and the new host. The routing approach does not concern any 

other off-path CLP. 
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To be found through 
upper portCorrespondence CLP 
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To be found through 

left port
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Trace of the SSV’s moveALP CLP

CLPn

Original path 
(from ALPx to CLPm ) 

New Host 
CLP(CLPn)

New Host 
CLP

Fig. 7. Gradual Address Updating and Routing 
 

As a result of migrating an SSV, the value range of its type may change in both the original and 

the new host. Therefore, the attribute value ranges related to the two hosts have to be re-

computed and updated. However, this does not influence the routing on other SSVs. 

B. Range-based Routing 

The range-based routing approach uses information about the attribute value range to locate 

SSVs in the tree. Under this approach, a CLP forwards a query according to (a) the availability 

of the SSV type being queried beyond its ports and (b) the value range of SSV(s) belonging to 

the given type. 

1) Range Query with Range-based Routing 

The approach matches the query window with the attribute value ranges along the searching 
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paths to gradually approach the potential targets. When an ALP issues an attribute value range 

query, a range-based routing will start from its server CLP. Searching will stop at the directions 

where the query window and attribute value ranges do not overlap. Like the address-based rout-

ing, the range-based routing stores the value range for each port by segmenting it. But instead of 

only considering the neighbour CLPs, each bit marks the existence of matching SSVs some-

where beyond the port. The port information will be kept up to date according to returned mes-

sages from neighbours; if an empty message is returned, there are no matching SSVs behind the 

corresponding port and this information will be used in the future. Obviously, the port informa-

tion may need to be updated when the value of any SSV changes. 

In the example shown in Fig. 8, CLPm keeps a record of the SSVs within the enclosed areas in 

its three ports respectively. Suppose that a range query for SSV type “X-pos” and range [2, 6] 

reaches CLPm: The CLP has two possible directions to relay the query. Direction B will be given 

up as the attribute value range [8, 9] does not overlap the window [2, 6]. The query will be for-

warded only towards direction A, as the corresponding attribute value range [1, 5] matches the 

condition. Fig. 9 depicts the range-based routing algorithm, it applies to any intermediate CLP 

which receives a range query request from a port. The CLP checks whether there is any SSV 

matching the queried value range. After that, the attribute ranges maintained by the other two 

ports will be compared with the queried range, the query will then be sent to the other CLPs 

through the ports whose attribute values overlap the range query. The CLP waits for the results 

(if any) returned from the other ports and conveys them together with local targets (if any) to the 

port via which the range query arrives. The range query operation on this CLP completes.  

2) Shared State Variable (ID) Query with Range-based Routing 
 

The above approach can also be applied to access SSVs by ID. In this case, the ID number 

range is segmented as well, so that ID queries can be resolved in a similar way as Range queries. 
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Furthermore, load management has direct influence on the ID range. After an SSV migrates, the 

ID range of its original and new host CLP may change. This issue is similar to dealing with the 

SSV update in attribute value range query. 

IV. A QUALITATIVE COMPARISON 

This section discusses the respective advantages and disadvantages of the two proposed ap-

proaches from a qualitative point of view. 

Availability of Shared State Variables. Both approaches provide correct information of 

where SSVs may be available and avoid routing accesses to those CLPs which do not contain 

any SSV of the requested type. The major difference is that the address-based approach gives 

exact locations while the range-based approach directs the accesses to the correct searching 

paths.  
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Fig. 8. Illustrating a design for Range-based Routing              Fig. 9. A Range-based Routing Algorithm 

 

Efficiency in Performing Range Queries. When performing a range query, the range-based 
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approach forwards the query to the potential targets in a bottom up fashion. In the target narrow-

ing procedure, those out-of-range SSVs can be filtered out effectively. The address-based ap-

proach needs to route the access to the neighbours (in the searching path) of all CLPs to match 

the query and the host CLPs ranges. In general, the ranged-based approach forwards a range 

query to a smaller set of CLPs than the address-based solution does.  The two approaches require 

searching within the same number of potential host CLPs. They do not differ in the complexity 

of searching within those hosts or the overhead in delivering results to the requesters. 

Complexity for Maintaining Range Information. The range-based approach relies on the at-

tribute value range information. From a CLP’s point of view, the attribute value ranges (in the 

other CLPs beyond each of its ports) must be available and accurate. A range-based algorithm 

needs to manage the segmented ranges properly. A fine-grained segmentation can obtain accu-

rate routing, while a coarser segmentation will reduce broadcasting of updated ranges. In the ad-

dress-based approach, no range information is maintained or broadcasted.  A CLP needs to sim-

ply compute its local attribute value range prior to notifying its direct neighbours.  In the case of 

handling SSV migration, the address-based approach does not incur any extra communication 

overhead for routing. In contrast, the range-based approach has to consider the immediate impact 

on the previous and current host CLPs, which may involve updating attribute value ranges on the 

CLPs. 

Efficiency of ID Queries. The address-based approach is able to resolve the address at the 

server CLP immediately for an SSV ID query, and the SSV can be accessed via a fixed path 

without routing to irrelevant CLPs. Using the range-based approach, querying an individual SSV 

is not straightforward. 

Complexity for Maintaining Routing Information. The address-based approach assigns dif-
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ferent tasks to different CLPs (servers and intermediate nodes in the tree) with server CLPs 

keeping addresses of all the SSVs in its client ALPs’ interest. However, address resolving within 

a centralised node can be optimised. The address change of any SSV does not affect routing. On 

the other hand, the range-based approach distributes the routing information throughout the CLP 

tree in an implicit manner. The address changing of any SSV may affect multiple CLPs or even 

the entire CLP tree. 

b

a

 
(A)                     (B) 
Fig. 10. Illustrating Different Agent Movement Patterns 

V. MODEL OF THE SIMULATION SYSTEM 

A comparative and quantitative analysis of the two proposed approaches is a non-trial task, as it 

involves the evaluation of efficiency in performing Range queries and ID queries, the complexity 

of maintaining routing information, and maintaining range information, design complexity etc. 

From the scale of the CLP tree and the number of SSVs, it is relatively straightforward to esti-

mate the computational and communicational complexity of the address-based routing approach  

using mathematical approaches [7]. However, the evaluation of range-based routing needs to 

consider other complicated factors at both application level and simulation level. 

For a quantitative analysis, one approach would be to directly implement and integrate the two 

approaches into the PDES-MAS kernel. However, this would require considerable implementa-

tion efforts, and at least part of the implementation could be in vain, as the strategies may not 
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meet the performance requirements. To avoid this we have adopted a meta-simulation approach, 

as proposed for instance in [16][29][30].  

The design of the meta-simulation [8] follows a layered approach similar to [12]. At the top 

layer, we find the application model, which is responsible for generating realistic query patterns. 

The next layer is the middleware layer, where the routing approaches are described and the 

PDES-MAS framework is represented. The third layer, which typically is reserved for the model 

of the underlying infrastructure, is implicitly represented in the performance measurements 

which are integrated by calculating the costs of queries in the second layer. Thus, similar to 

many simulations of P2P systems, the characteristics of the underlying network are abstracted 

away by only counting hops and messages.  

A. Application Model 

The application model focuses on the simulation of situated agents, wherein an agent has a po-

sition within the model that determines its region of interest: only objects situated in the region 

can be accessed by the agent. In addition, situated agents are usually able to change their own 

positions. This behaviour was modelled for a two dimensional environment, as shown in Fig. 10. 

An agent moves step-wise towards a pre-selected target along the shortest path, and it randomly 

chooses a new target on arrival. The distance of the new target, the target distance (mark “a”), is 

defined by the number of steps it takes the agent to reach it. The distance an agent can move in 

each step is referred to as the step size (mark “b”), which reflects the rate of change of the 

agent’s access pattern. The step size and target distance determine the activity scope and move-

ment speed of an agent. After each step of movement, an agent generates ID or Range queries 

concerning its current region of interest. 

We assume that all SSV types within the MAS model have a spatial meaning, i.e. the value 
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ranges for Range queries reflect the actual positions of the agents. Each SSV type represents a 

certain dimension of the environment, such as “X-pos” or “Y-pos”. Note that this assumption 

should not affect the generality of our model. We assume that other SSV types, such as non-

spatial attributes of the modelled objects, are accessed on demand after range queries identified 

all objects in the agent’s region of interest. SSVs may have a uniform value distribution or mul-

tiple normal distributions, illustrated in Fig. 11(A) and (B) respectively.  
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(A)                      (B) 

Fig. 11. Illustrating Different SSV Value Distribution Patterns 
 

B. PDES-MAS Model 

The model of the PDES-MAS framework has been simulated using discrete time steps, and it is 

formed by a set of SSVs. Each SSV consists of its (unique) ID, type, value and position in the 

CLP tree. The modelled CLP tree is binary and complete; therefore its structure can be defined 

by its depth. Another important parameter is the number of segments used by both routing algo-

rithms, which determines the granularity of the description of the value distribution of SSVs. To 

precisely identify the effect of each individual “impact factor”, the model adopts different SSV 
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distribution patterns for different runs5, while assuming that the locations of SSVs are fixed (as 

proposed in [27]) in each run. This avoids bias and additional parameters to be explored, since 

the dynamics of load balancing might be very complex. Instead, parametrisable properties of the 

SSV distribution are introduced in the next section. As the SSV distribution would be controlled 

by any load management scheme, its impact on routing algorithm performance allows to investi-

gate the relationship between routing and load balancing in a more general way. Nevertheless, 

the actual performance of both routing algorithms in combination with concrete load manage-

ment schemes (such as [27]) is an interesting research issue. 

VI. EXPERIMENTS AND RESULTS 

The experiments aim to study the impact on the routing algorithms by (1) the distribution pat-

terns of the values of SSVs in the value space (SSV Value Distribution), (2) the behaviour or ac-

cesss pattern of ALPs on SSVs, (3) the physical distribution of SSVs in the CLP tree (SSV Dis-

tribution Pattern), and (4) the distribution of the values of SSVs in each individual CLP6. Factor 

1 and 2 are at application level, related only to the agents and their environment, whereas factor 

3 and 4 are at simulation level and can be parameterised. Moreover, certain additional factors 

have particular influence on the range-based routing approach, namely (5) the ratio of number of 

updates to number of range queries, (6) the fluctuation between the updated value and the origi-

nal value, and (7) the granularity of value segments.  

The environment for the experiments is set as a 2-dimensional space containing 6,200 objects 

of 8 types. SSVs are defined as the X-pos or Y-pos of any object in the environment (12,400 

SSVs of 16 types), and they have numerous value distributions. On initialisation, the 64 agents 

 
5 The overall impact of combing routing and load management will be benchmarked on the PDES-MAS framework using realistic cases. 
6 This is different to the aforementioned value distribution parameter. For example, in a scenario the value ranges of SSVs in all CLPs are very 

close, and in another scenario the value ranges are significantly distinct from one CLP to another.  
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are distributed in a random, uniform manner over the space. The default settings of other pa-

rameters for the experiments are summarised in Tables I and II. The step size per dimension and 

the target distance conform to normal distributions, (µ = 2.0, σ = 1.0) and (µ = 5.0 and σ = 2.0), 

respectively. The diameter of an agent’s region of interest is set to 2.0. For example, an agent at 

the Pos-X = 50 could query a range of [49, 51) for all types associated with this dimension. The 

parameters roughly represent average values between worst and best cases for each routing ap-

proach. This allows us to observe the behaviour of each algorithm in a relatively small parameter 

space. The parameter space region that we investigated contains both kinds of setups: those in 

which the address-based routing is preferable, and those in which range-based routing is better 

(as illustrated for instance in Fig. 10, 11 and 21). In each of the following experiments, we al-

ways adjust one parameter while applying default values to the rest. This tends to explore the 

“general” scenarios in reality, and avoids biased analysis due to only using special cases with 

extreme settings. Each agent randomly generates eight requests for any type of SSV in each step. 

The simulation executes 300 time steps, which allows the simulated system to evolve signifi-

cantly. 

TABLE I 
SUMMARY OF THE DEFAULT APPLICATION LEVEL PARAMETERS 

Name of Parameters Value 
Time steps 300 

Events to be generated per agent per time step 8 
Step size of all agents per dimension µ = 2.0, σ = 1.0 
Target distance of all agents in steps µ = 5.0, σ = 2.0 

Agent’s range of interest 2.0 
Environment of the Agents 100 x 100 Torus 

 
TABLE II 

SUMMARY OF THE DEFAULT SIMULATION LEVEL PARAMETERS 
Name of Parameters Value 

Depth of the CLP Tree 4 
Number of client ALPs to each server CLP 4 ALPs per server 

CLP 
Root Imbalance 0 
CLP Fluctuation 1 

Number of segments for routing algorithms 100 
 

 The physical distribution of SSVs can be adjusted with two parameters, namely root imbal-
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ance and CLP fluctuation. Root imbalance describes the percentage of additional SSVs hosted 

by the root CLP comparing to the rest. When root imbalance = 0, SSVs are distributed evenly on 

all CLPs. When root imbalance = 1, all SSVs are concentrated on the root CLP. Let n be the 

number of CLPs,  the root imbalance, and ]1,0[∈r ]1,0[∈is the share of SSVs hosted by CLPi, 

i.e., s2 = 0.6 means that 60% of all SSVs are hosted by CLP2. We can then define s1 (the share of 

SSVs on the root CLP) as 
n
nr )1.(1 −+  and si with i = 2, …, n as 

n
r−1 , so that 

.11).1()1.(1
1

=
−

−+
−+

=∑ = n
rn

n
nrsn

i i  The CLP fluctuation constraints the maximum difference 

between the greatest and smallest value of SSVs of the same type on an individual CLP. For ex-

ample, suppose CLP fluctuation = 0.05 and the designated type of SSVs has a value space from 0 

to 100, then the difference of these SSVs’ value on the CLP is not greater than 0.05× 100 = 5: A 

CLP may host two SSVs of type X-pos with values 80 and 82, but another SSV of type X-pos, 

with value 75, cannot be hosted by the same CLP, because 82−75 > 5. Since SSVs do not mi-

grate but have dynamic values, this condition holds only for the initial state. The experimental 

results are reported in terms of routing cost and accuracy.  

The routing cost is measured using two metrics: the number of messages and the number of 

hops to be traversed in resolving each access to SSVs. The number of messages is the number of 

all messages that are generated by the routing algorithm in order to resolve a query. We regard 

the transmission of information from one CLP to another as a single message. If the same infor-

mation is propagated along several CLPs, it is counted as multiple messages. Hence, the number 

of messages is a measurement of the overall bandwidth consumption. The number of hops is the 

maximum number of messages that had to be sent sequentially until the request could be re-

solved. This means, that the number of hops corresponds to the maximal path length from the 
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ALP generating the request to a CLP which had to be contacted, multiplied by 2 (for the query 

and the corresponding response). This is very similar to the notion of critical paths in parallel 

computing. Hence, the number of hops is a measurement of the overall latency. The two metrics 

for the routing algorithms are denoted by the variables range-basedmessages, range-basedhops and 

address-basedmessages, address-basedhops for the range-based and address-based algorithm respec-

tively. 

In order to calculate the accuracy of the routing algorithms, the minimal number of messages 

and hops (optmessages and opthops) are computed, which constitute the absolute limit for optimising 

the cost of any routing algorithm. For instance, Fig. 1 illustrates the querying of two SSVs, with 

the smallest set of CLPs and connections for this query highlighted. Each connection needs to 

transmit two messages (one request and one response), thus the total number of messages is 10. 

The maximum number of hops is recorded as 8 (for reading SSV1 on the left); this is because 

messages have to be sent sequentially (in any path) until reaching the target and thus the laten-

cies in other concurrent search paths are masked. The communication cost between the ALP and 

its server CLP is considered negligible. The ratio of the minimal number of messages (or hops) 

to the number of messages (or hops) is defined as the accuracy of routing algorithms. For exam-

ple, the “message accuracy” of the range-based algorithm is defined as 

messages

messagesbasedrange
messages basedrange

opt
accuracy

−
=− .  Likewise, the “hop accuracy” for ranged-based algo-

rithm and the message and hop accuracy of the address-based algorithm are denoted by 

,  and  respectively.  basedrange
hopsaccuracy − basedaddress

messagesaccuracy − basedaddress
hopsaccuracy −

A. Effect of Agent’s Environment (SSV Value Distribution) 

Several non-uniform distributions of SSV values have been used while keeping default values 
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for all other parameters. Values have been assigned to SSVs in a round-robin fashion by one of 

three normal distributions (see Fig. 11(B)). The mean values of normal distributions are 3
216 , 

50 and 3
183 . The deviation σ is varied from 0 to 10, so that the SSV value distribution changes 

from highly concentrated to highly scattered.  

The effects of value distribution on the cost and accuracy of routing algorithms as compared to 

the optimal cost are reported in Fig. 12 and Fig. 13 respectively. Evidently, with values of SSVs 

distributed more sparsely, routing becomes more costly.  In terms of number of hops, the range-

based algorithm performs much better, by closely approaching opthops. When SSV values are 

scattered enough, the number of hops in both algorithms converges to opthops. In terms of number 

of messages, the performance of both algorithms deteriorates as the degree of dispersion of SSVs 

increases. The accuracyhops of both algorithms converge to 1 while the maximum accuracymessages 

for both algorithms only approximates 0.8.  In all situations, the range-based algorithm is likely 

to incur less overhead for routing range queries.  
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Fig. 12. Influence of Overall SSV Value Distribution on Routing Cost 
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Fig. 13. Influence of Overall SSV Value Distribution on Accuracy of Routing 

Similar experiments have also been performed to measure the accuracy of making ID queries. 

The address-based algorithm always achieves optimal results (accuracy = 1) while the accuracy 

of the range-based algorithm is quite low, about 0.36. This is because the range-based algorithm 

does not store the location of an individual SSV and requires exhaustive range searches on SSV 

IDs. 

B. Effect of SSV Value Distribution Pattern 

A set of experiments have been performed to examine how the distribution pattern of SSVs in 

the simulation infrastructure (the CLP tree) affects the performance of routing algorithms. This 

subsection reports the effect of two simulation level factors: (a) the physical distribution of SSVs 

on the CLP tree, and (b) the distribution of SSVs’ values on each individual CLP, given the be-

haviour of agents remains the same. The two relevant parameters, root imbalance and CLP fluc-

tuation, are varied between 0..1 and 0.05..1 respectively.  
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Fig. 14. Message Accuracy for ID Query 

 
Fig. 14 gives the accuracy of the range-based algorithm for ID queries in terms of messages. 

The SSV value distribution in a CLP does not affect the routing of ID queries at all. However, 

concentration of SSVs on fewer CLPs will dramatically improve the accuracy of routing ID que-

ries using range-based algorithm. 

 

Fig. 15 illustrates the impact of the SSVs’ physical distribution pattern on the cost of routing 

range queries using the two routing algorithms. When SSVs are distributed on all CLPs uni-

formly (root imbalance = 0), range-basedhops and address-basedhops are nearly equal to opthops 

while range-basedmessages and address-basedmessages are very close but still much greater than 

optmessages. With the increase of root imbalance, the routing cost gradually decreases. The range-

based algorithm adapts much better than the address-based algorithm. When root imbalance = 1, 

all SSVs locate at the root CLP and it makes no difference to either algorithm; this extreme case 

reflects the use of a single centralised CLP. 
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Fig. 15. Influence of the SSV Distribution Pattern on the Routing Cost 
 

Fig. 16 presents the cost of performing range queries against the value distribution on each 

CLP. The results are similar to those obtained in Fig. 12, namely the value distribution of all 

SSVs and the value distribution of SSVs on each individual CLP both have significant influence 

on the routing cost involved in range queries. 
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Fig. 16. Influence of SSV Value Distribution on Individual CLPs on Routing Cost 
 

The accuracy of the routing algorithms against the SSVs’ physical distribution pattern is illus-

trated in Fig. 17. These results further indicate that the range-based algorithm adapts better to the 

SSV’s distribution pattern. The latencies (number of hops) incurred by both algorithms are simi-
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lar; however the range-based algorithm generates much less communication traffic (number of 

messages). Furthermore, comparing to Fig. 13, the value distribution on an individual CLP has a 

less significant impact than the overall value distribution. 
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Fig. 17. Influence of SSV’s Physical Distribution Pattern on the Accuracy of Routing Algorithms 
 

C. Further Analysis of the Range-based Approach 

The complexity of the range-based approach calls for further investigation. Three additional 

key parameters may affect the performance of range-based routing: (a) the ratio of the number of 

updates to number of range queries, (b) the fluctuation between the updated value to the original 

value, and (c) the granularity of segments.  

1) Effect of SSV Update (Application Level) 

An agent may randomly update any SSV whose value is in its region of interest. In the meta-

simulation, the SSV’s value is updated using an absolute offset (to the old value), which is ran-

domly set conforming to uniform distribution with lower bound 0 and upper bound varied be-

tween 0.01 and 5. Furthermore, the probability that an agent generates an update query is set be-

tween 0.01 and 0.5.  

Fig. 18 gives an overall picture of the correlation between offsets of updated SSV values and 
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the ratio of update queries to the messages (updates) needed for accomplishing update queries. 

Three specific ratios of update queries are highlighted. The results indicate that the increase of 

both the offset and the ratio of update queries lead to the generation of more update messages. 

Compared to the number of overall messages obtained in the previous experiments (see Fig. 12, 

15, 16), the number of update messages is very small. Although this number depends on the spe-

cific configuration of the experiments, it still suggests that the overhead incurred by update que-

ries tends to be negligible in an environment with heavy load and traffic. 

Fig. 19 illustrates the effect of the ratio of update queries to the routing cost and the breakdown 

of routing cost involved in update queries and range queries. This ratio has a significant impact 

to the number of messages and hops required by both query types. Additionally, Fig. 19(A) 

shows that basically the address-based algorithm outperforms the range-based one in situations 

with frequent update queries. Although the address-based approach generates more messages for 

range queries, it still incurs fewer messages in total due to the benefit in update queries. Fig. 

19(B) indicates that the number of hops is linear to the ratio of update queries and the candidate 

routing algorithms do not make considerable difference in this aspect. 
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Fig. 18. Agent Behaviour’s Influence on Number of Messages for Update Query 
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Fig. 19. Influence on the Ratio of Update Queries to Routing Cost 

2) Effect of Granularity of Segments (Simulation Level) 

A set of experiments have investigated the role of the granularity of attribute value range seg-

mentation for the range-based algorithm. The number of segments used to describe an attribute 

value range varies between 1and 200, with a larger number implying a more precise attribute 

value range description. 

1 200
0

2

4

6

8

10

12

14x 104

Influence of number of segments on routing cost                     

Number of segments

N
um

be
r o

f h
op

s/
m

es
sa

ge
s

number of hops-range based
number of messages-range based
number of hops-address based
number of messages-address based

1 200
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 106Influence of number of segments on number of messages 

for range queries (50%Range quries and 50% Updates)

Number of segments

N
um

be
r o

f m
es

sa
ge

s 
fo

r r
an

ge
 q

ue
rie

s

Range-based
Optimal
Adress-based

 
(A)                 (B) 

Fig. 20. Influence of Segment’s Granularity on the Routing Cost 
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The results are reported in Fig. 20.  The total (for both range queries and updates) number of 

messages required by the address-based algorithm is larger in most cases. As the number of seg-

ments increases the address-based algorithm latency stabilises, as queries have to be sent only to 

neighbours. When the number of segments becomes large enough, the range-based algorithm 

tends to update CLPs in a rather wide extent, an action which deteriorates its performance. Fig. 

20(B) illustrates the relationship of routing range queries to the granularity of segmentation. As 

the segment size decreases, the number of messages required to satisfy the range query is dra-

matically reduced, because the accurate description of the value ranges results in a more precise 

routing. 

Fig. 21 presents the overall difference (range-based - address-based) of the two algorithms in 

terms of (total) number of messages. Negative values denote the space for achieving better per-

formance for adopting the range-based approach, and vice versa for adopting the address-based 

one. 

 
Fig. 21. Difference in Message Numbers using Different Routing Algorithms 

3) Effect of Agent’s Behaviour  

In the experiments presented in the previous sections, the environment is heavily populated (64 

agents randomly situated in a 100×100 surface and 12,400 SSVs distributed either sparsely or 
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concentrated in 9 central points as shown in Fig. 11), a feature that renders the investigation of 

the effect of agents’ behaviour a difficult task as, irrespective of how far agents move (regionally 

or globally), there are always plenty of SSVs for them to access in their region of interest. For 

this investigation, a thinly populated environment with 4 agents and 1,550 SSVs7 of two types 

has been used; the size of CLP tree has been reduced accordingly (depth = 2). In this set of ex-

periments, an agent’s behaviour pattern can be characterised by its activity scope and the speed 

at which it moves. For each agent, its range of interest is 5.0 and its stepsize is varied between 

0.1 (agent moves regionally) to 5.0 (agent moves globally). Two different target distances, (1, 0) 

and (5, 2), are tested to mimic different movement speeds. The rest of the parameters have been 

set to the default values. 
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7 This number represents 1/16th of the number of SSVs (12,400) in the original experiments, to reflect the number of agents used (4=64/16) 
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Fig. 22. Effect of Agent’s Access Pattern 
 

Fig. 22 reports the effect of the size of an agent’s activity territory in terms of number of hops 

and messages. Fig. 22(A)&(B) report results for “fast” agents and (C)&(D) for “slow” agents. 

Evidently, the address-based approach incurs more latency while its overall cost is almost neural 

to the agent’s moving pattern. When an agent moves more globally and faster, the range-based 

algorithm becomes more costly as the agent generates queries that differ very much from each 

other, so that many updates occur. 

VII. RELATED WORK 

The distributed simulation of agent-based systems has been the focus of several recent papers 

including [1][20][23][24][39][13][33][34], but none of this work has considered the efficient dis-

tribution and access of the simulation’s shared state space.  

Routing has been heavily studied in the area of computer networks [38], however the issue of 

range queries does not arise in this context.  In [36] Steen et al. proposed a scalable location ser-

vice mechanism for locating mobile objects in distributed environments. Their approach is ad-

dress-based, which binds an object’s name to one or more addresses where the object can be 

contacted. The location service is designed to handle objects with arbitrary migration patterns. 
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Using a hierarchical search tree, where each new object is registered, the leaf nodes store the ad-

dresses. By registering the contact address in the smallest region in which the object is moving, 

the approach only requires searching an extremely short path to locate randomly migrating ob-

jects. 

The issue of range queries has received considerable attention in the area of distributed spatial 

databases, e.g., [2][9][12][26][28][35], although the work in this area tends to focus on the opti-

misation of matching algorithms. In the area of context-aware computing, location dependent 

information services (LDIS) address the problem of mobile query sources, however, typically 

they do not have to cope with highly dynamic data distributions, because the data can be distrib-

uted according to its geographical validity in a static fashion [17]. 

The problem of coordinated access to shared data has also been studied in the context of cache 

consistency protocols for distributed and multiprocessor systems (e.g., [22][25][37]), but such 

systems are based on data replication and therefore the solutions devised are not directly appli-

cable to the PDES-MAS architecture. 

In the Modelling and Simulation community, the majority of approaches focus on the use of 

multicast rather than unicast peer-to-peer (P2P) overlays as described here. Notable contribu-

tions by Rak et al [31], Boukerche et al [6], and Berrached et al [5] all used variations on the 

theme of mapping a set of multicast groups on to the cells of an n-dimensional grid. Range que-

ries here are mapped to some subset of the cells (groups) to which the querying node subscribes. 

Alternative mappings such as that proposed by Morse [15] reduce redundant traffic, but increase 

the computational complexity. 

The problem of how to optimally distribute and retrieve both data (publications) and queries 

over the data (subscriptions) in a P2P overlay has been studied extensively in the field of Content 
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Addressable Networks (CANs) such as the Distributed Hash Table (DHT) [32]. Approaches con-

centrating on serving contiguous range queries in several dimensions with minimum latency 

have been presented by both Barambe et al [3][4] and Ganesan et al [11]. These systems are de-

signed for real time applications, such as P2P network multiplayer games, rather than asynchro-

nous logical time systems like parallel simulations. 

VIII. CONCLUSIONS AND FURTHER WORK 

This paper has identified the efficient data accessing as a key issue to optimising the execution 

of distributed simulations of complex agent-based systems.  It has presented two different ap-

proaches to address this problem, namely an address-based approach, which locates data accord-

ing to their address information, and a range-based approach, whose operation is based on look-

ing up attribute value range information along the paths to the destinations.    

To facilitate the analysis of the proposed approaches, the paper adopted a meta-simulation 

framework to analyse query performance on distributed and dynamic data whose location and 

properties are changing constantly and unpredictably.  This is an open challenging problem and 

particularly difficult to tackle using pure deterministic or analytic approaches. Although the pro-

posed algorithms were analysed in the context of the PDES-MAS framework, the results ob-

tained are valid for any system with similar characteristics, such as distributed systems based on 

peer servers. The main conclusions that can be drawn from the experimental results obtained can 

be summarised as follows:  

• The data value distribution has a vast impact on the performance of both approaches. When 

the data values are distributed sparsely enough, both algorithms can minimize the latency of 

routing to the optimal case, whereas they tend to generate a large number of messages other-

wise (~20% more than the optimal case). 
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• The data distribution pattern is also a decisive factor to the performance of routing. The more 

evenly data is distributed, the closer both approaches approximate the optimal case. The 

smaller the fluctuation of data values maintained in a particular node, the more accurate the 

routing. 

• Granularity of segmentation can considerably affect the routing of update queries. The ad-

dress-based approach is superior to the range-based one when segments are very precise. In 

range-based routing, the routing accuracy is adapted. However, a precise segmentation leads 

to large overhead in dealing with update queries. 

The meta-simulation analysis approach described in this paper has proved to be a powerful 

tool to analyse the impact of the model abstract characteristics to the efficiency of the proposed 

algorithms. However, as in every simulation exercise, the problem of verification and validation 

of the simulation and the reliability of the results remains. Most importantly,  as any meta-

simulation approach, it provides only an idealistic performance projection of the algorithms and 

does not take into account the specific characteristics of any particular implementation or agent-

based model.  A more realistic performance evaluation  of the proposed routing algorithms and 

an analysis of  their scalability and their computational complexity requires their implementation 

and  integration in the PDES-MAS kernel and experimentation with more realistic benchmarks. 

Work in this direction has already commenced.  

Another challenging issue to be addressed in the future is the relationship between the pro-

posed routing algorithms and the load management (data migration) and synchronisation  

mechanisms of the PDES-MAS kernel (described  in  [27] and [18][19] respectively).  
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