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ABSTRACT
Model-checking resource logics with production and consumption

of resources is a computationally hard and often undecidable prob-

lem. We introduce a simple and realistic assumption that there is

at least one diminishing resource, that is, a resource that cannot be
produced and every action has a non-zero cost on this resource.

An example of such resource is time. We show that, with this as-

sumption, problems that are undecidable even for the underlying

Alternating Time Temporal Logic, such as model-checking under

imperfect information and perfect recall, become decidable for re-

source logics with a diminishing resource.

1 INTRODUCTION
There has been a considerable amount of work on multi-agent

temporal logics interpreted over structures where agents’ actions

consume resources, or both produce and consume resources. Exam-

ples include an extension of Coalition Logic where actions consume

resources and coalitional modalities are annotated with resource

bounds (‘agents in coalition A have a strategy of cost at most b to

achieve ϕ’) (RBCL) [6, 8], a similar extension for Alternating Time

Temporal Logic ATL (RB-ATL) [7], extensions of Computation Tree

Logic and Alternating Time Temporal Logic with both consumption

and production of resources (RTL, RAL) [11, 12], a variant of re-

source bounded ATL where all resources are convertible to money

and the amount of money is bounded (PRB-ATL) [17, 18], an ex-

tension of PRB-ATL to µ-calculus [16], a version of ATL with more

general numerical constraints (QATL
∗
) [13], a version of RB-ATL

where unbounded production of resources is allowed (RB±ATL)

[2, 5]. The model-checking problem for such resource logics is de-

cidable, though often not comptationally tractable, when resources

are only consumed or where the amount of resources is somehow

bounded. [12]. For RAL with unbounded production of resources,

the model-checking problem is undecidable, and this holds even

for several of its fragments [12], although recently a fragment of

RAL without the boundedness assumption has been found where

the model-checking problem is decidable [3]. A slightly different

semantics compared to RAL, but allowing unbounded production

of resources, also results in a decidable model-checking problem

for resource extensions of ATL such as RB±ATL [5]; the complexity

of the model-checking problem for RB±ATL has been shown to be

2EXPTIME-complete in [2].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

, ,
© 2018 Copyright held by the owner/author(s).

There exists also a large body of related work on reachability

and non-termination problems in energy games and games on

vector addition systems with state [10, 20]. In fact, complexity and

decidability results for resource logics in [2] build on the results for

single-sided vector addition systems with states [1, 14].

As far as we are aware, there is no work on model-checking

resource logics under imperfect information. For ATL (without

resources) under imperfect information and with perfect recall

uniform strategies the problem is undecidable for three or more

agents [19]. It is however decidable in the case of bounded strategies

[23]. For two player energy games with imperfect information and

a fixed initial credit the existence of a winning strategy is also

decidable [15].

In this paper we consider a special kind of models for resource

logics satisfying a restriction that one of the resources is always

consumed by each action. It is a very natural setting which occurs

in many verification problems for resource logics. The first obvious

example of such a resource is time. Time is always ‘consumed’ by

each action, and no agent in the system can turn back the clock and

‘produce’ time. When a verification problem has time as one of the

explicit resource parameters, the restriction certainly applies. Other

examples include systems where agents have a non-rechargeable

battery and where all actions consume energy, e.g,. nodes in a

wireless sensor network; and systems where agents have a store of

propellant that cannot be replenished during the course of a mission

and all actions of interest involve manoeuvring, e.g., a constellation

of satellites. We call this special resource that is consumed by all

actions a diminishing resource.
From the technical point of view, the restriction to systems with

a diminishing resource has the advantage that all strategies become

bounded, even if for other resource types unbounded production is

allowed. In the case of RB±ATL with a diminishing resource where

the model-checking problem is already known to be decidable and

2EXPTIME-complete, we can produce simpler model-checking algo-

rithms and a lower complexity bound (PSPACE if resource bounds

are written in unary). In the case of RB±ATL with a diminishing

resource under imperfect information, the result of [23] does not ap-

ply immediatelly because the bound is not fixed in advance, but the

logic is indeed decidable and we get a new set of model-checking

algorithms and a complexity bound. Finally, the decidability of RAL

with a diminishing resource follows from the result on the decid-

ability of RAL on bounded models [12], but the model-checking

algorithms and the PSPACE upper bound (for resource endowments

written in unary) are specific to RAL with diminishing resource

and are new.

The rest of the paper is organised as follows. In Section 2, we

introduce RB±ATL# with a diminishing resource, motivate changes

to its syntax (we use the Release operator instead of ‘Always’ or
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‘Globally’, and do not allow infinite resource bounds), give a model-

checking algorithm and analyse its complexity. In Section 3 we

introduce RB ± ATL#iR , which is RB ± ATL# under imperfect infor-

mation and perfect recall, and give a model-checking algorithm for

it and analyse its complexity. Finally in Section 4 we define RAL

with diminishing resource, give a model-checking algorithm for it

and show that the complexity is the same as for RB ± ATL#.

2 RB ± ATL#

The logic RB±ATL was introduced in [4], and its model-checking

complexity studied in more detail in [5] and [2]. Here we consider

a variant of this logic without the idle action which is interpreted

on finite paths. It contains a Release operator instead of Globally

and does not allow infinite values in resource bounds. We use

Release because it is not definable in ATL in terms of Next, Until

and Globally [21] while Globally is definable in terms of Release,

and it has a more intuitive meaning on finite computations.

As is the case with RB±ATL, the syntax of RB ± ATL# is defined

relative to the following sets:

Aдt = {a1, . . . ,an } is a set of n agents, Res = {res1, . . . , resr } is a

set of r resource types,Π is a set of propositions, andB = NRes
Aдt

is

a set of resource bounds (resource allocations to agents). Elements

of B are vectors of length n where each element is a vector of

length r (the kth element of the ith vector is the allocation of the

kth resource to the ith agent). We will denote by BA (for A ⊆ Aдt )
the set of possible resource allocations to agents in A.

Formulas of RB ± ATL# are defined by the following syntax

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ψ | ⟨⟨Ab ⟩⟩⃝ϕ | ⟨⟨Ab ⟩⟩ϕU ψ | ⟨⟨Ab ⟩⟩ϕ Rψ

where p ∈ Π is a proposition, A ⊆ Aдt , and b ∈ BA is a resource

bound. Here, ⟨⟨Ab ⟩⟩⃝ϕ means that a coalitionA can ensure that the

next state satisfies ϕ under resource bound b. ⟨⟨Ab ⟩⟩ϕU ψ means

that A has a strategy to enforceψ while maintaining the truth of ϕ,

and the cost of this strategy is at most b. Finally, ⟨⟨Ab ⟩⟩ϕ Rψ means

that A has a strategy to maintain ψ until and including the time

when ϕ becomes true, or to maintainψ forever if ϕ never becomes

true, and the cost of this strategy is at most b.
The language is interpreted on resource-bounded concurrent

game structures. Without loss of generality, we assume that the

first resource type is diminishing, i.e., is consumed by every action.

Definition 2.1. A resource-bounded concurrent game structure

with diminishing resource (RB-CGS
#
) is a tuple M = (Aдt , Res ,

S,Π,π , Act , d, c,δ ) where:

• Aдt is a non-empty finite set of n agents,

• Res is a non-empty finite set of r resource types, where the
first one is the distinguished diminishing resource

• S is a non-empty finite set of states;

• Π is a finite set of propositional variables and π : Π → ℘(S )
is a truth assignment which associates each proposition in

Π with a subset of states where it is true;

• Act is a non-empty set of actions

• d : S × Aдt → ℘(Act ) \ {∅} is a function which assigns

to each s ∈ S a non-empty set of actions available to each

agent a ∈ Aдt . We denote joint actions by all agents in Aдt
available at s by D (s ) = d (s,a1) × · · · × d (s,an );

• c : S ×Act → Zr is a partial function which maps a state s
and an action σ to a vector of integers, where the integer in

position i indicates consumption or production of resource ri
by the action (negative value for consumption and positive

value for production). We stipulate that the first position

in the vector is always at most −1 (at least one unit of the

diminishing resource is consumed by every action).

• δ : S × Act |Aдt | → S is a partial function that maps every

s ∈ S and joint action σ ∈ D (s ) to a state resulting from

executing σ in s .

In what follows, we use the usual point-wise notation for vector

comparison and addition. In particular, (b1, . . . ,br ) ≤ (d1, . . . ,dr )
iff bi ≤ di ∀ i ∈ {1, . . . , r }, (b1, . . . ,br ) = (d1, . . . , dr ) iff bi = di ∀
i ∈ {1, . . . , r }, and (b1, . . . ,br )+ (d1, . . . ,dr ) = (b1+d1, . . . ,br +dr ).
We define (b1, . . . ,br ) < (d1, . . . ,dr ) as (b1, . . . ,br ) ≤ (d1, . . . ,dr )
and (b1, . . . ,br ) , (d1, . . . ,dr ). Given a function f returning a

vector, we denote by fi the function that returns the i-th component

of the vector returned by f .
We denote by prod(s,σ ) the vector obtained by replacing nega-

tive values in c (s,σ ) by 0s: it is the vector of resources produced by

action σ . We denote by cons(s,σ ) the vector obtained by first re-

placing positive values in c (s,σ ) by 0s and then replacing negative

values by their absolute values: cons(s,σ ) = ( |min(0, c1 (s,σ )) |, . . . ,
|min(0, cr (s,σ )) |). It returns the positive costs on each resource of

executing σ . In particular, cons1 (s,σ ) ≥ 1.

We denote the set of all finite non-empty sequences of states

(finite computations) in a RB-CGS
# M by S+. We consider only finite

computations because we are interested in computations possible

under a finite resource bound, and in the presence of a diminishing

resource which is required for any action, such computations are

always finite. For a computation λ = s1 . . . sk ∈ S+, we use the

notation λ[i] = si for i ≤ k , λ[i, j] = si . . . sj ∀ 1 ≤ i ≤ j ≤ k , and
|λ | = k for the length of λ.

Given a RB-CGS
# M and a state s ∈ S , a joint action by a coalition

A ⊆ Aдt is a tuple σ = (σa )a∈A (where σa is the action that agent a
executes as part of σ , the ath component of σ ) such that σa ∈ d (s,a).
For a joint action σ by a coalition A, we denote by cons(s,σ ) =
(cons(s,σa ))a∈A the vector of costs of the joint action, similarly for

prod(s, siдma). The set of all joint actions forA at state s is denoted
by DA (s ).

Given a joint action by Aдt σ ∈ D (s ), σA (a projection of σ on A)
denotes the joint action executed by A as part of σ : σA = (σa )a∈A.
The set of all possible outcomes of a joint action σ ∈ DA (s ) at state
s is:

out (s,σ ) = {s ′ ∈ S | ∃σ ′ ∈ D (s ) : σ = σ ′A ∧ s
′ = δ (s,σ ′)}

A strategy for a coalition A ⊆ Aдt in a RB-CGS
# M is a mapping

FA : S+ → Act |A | such that, for every λ ∈ S+, FA (λ) ∈ DA (λ[|λ |]).
A computation λ is consistent with a strategy FA iff, for all i , 1 ≤
i < |λ |, λ[i +1] ∈ out (λ[i], FA (λ[1, i])). We denote by out (s, FA ) the
set of all computations λ starting from s that are consistent with
FA.

Given a bound b ∈ BA, a computation λ ∈ out (s, FA ) is b-
consistent with FA iff, for every i , 1 ≤ i < |λ |,

cons(λ[i], FA (λ[1, i])) ≤ eA (λ[i])
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where eA (λ[i]) is the amount of resources agents in A have in λ[i]:
eA (λ[1]) = b and

eA (λ[i + 1]) = eA (λ[i]) − cons(λ[i], FA (λ[1, i]))+

prod(λ[i], FA (λ[1, i])).

In other words, the amount of resources any of the agents have is

never negative for any resource type.

A computation λ is b-maximal for a strategy FA if it cannot be

extended further while remaining b-consistent (the next action

prescribed by FA would violate b-consistency).
The set of all maximal computations starting from state s that

are b-consistent with FA is denoted by out (s, FA,b). Note that this
set is finite, the maximal length of each computation is bounded

by b (or rather by the minimal value for any agent in A of ba1: the
bound on the first resource).

Given a RB-CGS
# M and a state s ofM , the truth of an RB±ATL#

formula ϕ with respect to M and s is defined inductively on the

structure of ϕ as follows:

• M, s |= p iff s ∈ π (p);
• M, s |= ¬ϕ iffM, s ̸ |= ϕ;
• M, s |= ϕ ∨ψ iffM, s |= ϕ orM, s |= ψ ;

• M, s |= ⟨⟨Ab ⟩⟩⃝ϕ iff ∃ strategy FA such that for all b-maximal

λ ∈ out (s, FA,b), |λ | ≥ 2 andM, λ[2] |= ϕ;

• M, s |= ⟨⟨Ab ⟩⟩ϕU ψ iff ∃ strategy FA such that for all b-
maximal λ ∈ out (s, FA,b), ∃i such that 1 ≤ i ≤ |λ |,M, λ[i] |=
ψ andM, λ[j] |= ϕ for all j ∈ {1, . . . , i − 1}.

• M, s |= ⟨⟨Ab ⟩⟩ϕ Rψ iff ∃ strategy FA such that for all b-
maximal λ ∈ out (s, FA,b), either ∃i such that 1 ≤ i ≤ |λ |:
M, λ[i] |= ϕ and M, λ[j] |= ψ for all j ∈ {1, . . . , i}; or,
M, λ[j] |= ψ for all j such that 1 ≤ j ≤ |λ |.

The most straightforward way of model-checking RB ± ATL# is

to adapt the model-checking algorithm for RB±ATL [5] and add

a clause for ⟨⟨Ab ⟩⟩ϕ Rψ . We present this simple algorithm here

because we will use it in modified form in subsequent sections. It is

however possible to do RB±ATL# model-checking more efficiently

in the spirit of [17].

The algorithm is shown in Algorithm 1. Given a formula, ϕ0,
we produce a set of subformulas Sub (ϕ0) of ϕ0 in the usual way.

Sub (ϕ0) is ordered in increasing order of complexity. We then pro-

ceed by cases. For all formulas in Sub (ϕ0) apart from ⟨⟨A
b ⟩⟩⃝ϕ,

⟨⟨Ab ⟩⟩ϕU ψ and ⟨⟨Ab ⟩⟩□ϕ we essentially run the standard ATL

model-checking algorithm [9]. Labelling states with ⟨⟨Ab ⟩⟩⃝ϕ makes

use of a function Pre (A, ρ,b) which, given a coalitionA, a set ρ ⊆ S
and a bound b, returns a set of states s in which A has a joint ac-

tion σA with cons(s,σA ) ≤ b such that out (s,σA ) ⊆ ρ. Labelling

states with ⟨⟨Ab ⟩⟩ϕU ψ and ⟨⟨Ab ⟩⟩ϕ Rψ is more complex, and in

the interests of readability we provide separate functions: until

for ⟨⟨Ab ⟩⟩ϕU ψ formulas is shown in Algorithm 2, and release for

⟨⟨Ab ⟩⟩ϕ Rψ formulas is shown in Algorithm 3.

Both algorithms proceed by depth-first and-or search ofM . We

record information about the state of the search in a search tree

of nodes. A node is a structure that consists of a state of M , the

resources available to the agents A in that state (if any), and a

finite path (sequence of of nodes and edges) leading to this node

from the root node. Edges in the tree correspond to joint actions

by all agents. Note that the resources available to the agents in

a state s on a path constrain the edges from the corresponding

node to be those actions σA where cons(s,σA ) is less than or equal

to the available resources. For each node n in the tree, we have a

function s (n) that returns its state, p (n) that returns the nodes on
the path, act (n) that returns the joint action taken to reach s (n)
from the preceding state on the path (i.e., the edge to n), and e (n)
that returns the vector of resource availabilities in s (n) for A as a

result of following p (n). The functions acta (n) and ea (n) return
the action performed by agent a ∈ A in act (n) and the resources

available to agent a in e (n) respectively. We use p (n)[i] to denote

the i-th node in the path p (n), and p (n)[1, j] to denote the prefix of

p (n) up to the j-th node. The function node0 (s,b) returns the root
node, i.e., a node n0 such that s (n0) = s , p (n0) = [ ], act (n0) = nil ,
and e (n0) = b. The function node(n,σ , s ′) returns a node n′ where
s (n′) = s ′, p (n′) = [p (n) · n], act (n′) = σ , and for all agents a ∈ A
ea (n

′) = ea (n) + prod(s (n),σa ) − cons(s (n),σa ).

Algorithm 1 Labelling ϕ0

1: function RB ± ATL#-label(M,ϕ0)
2: for ϕ ′ ∈ Sub (ϕ0) do
3: case ϕ ′ = p, ¬ϕ, ϕ ∨ψ standard, see [9]

4: case ϕ ′ = ⟨⟨Ab ⟩⟩⃝ϕ
5: [ϕ ′]M ← Pre (A, [ϕ]M ,b)

6: case ϕ ′ = ⟨⟨Ab ⟩⟩ϕU ψ
7: [ϕ ′]M ← { s | s ∈ S∧

8: until-strategy(node0 (s,b), ⟨⟨A
b ⟩⟩ϕU ψ )}

9: case ϕ ′ = ⟨⟨Ab ⟩⟩ϕ Rψ
10: [ϕ ′]M ← { s | s ∈ S∧

11: release-strategy(node0 (s,b), ⟨⟨A
b ⟩⟩ϕ Rψ )}

12: return [ϕ0]M

Algorithm 2 Labelling ⟨⟨Ab ⟩⟩ϕU ψ

1: function until-strategy(n, ⟨⟨Ab ⟩⟩ϕU ψ )
2: if s (n) ∈ [ψ ]M then
3: return true
4: if s (n) < [ϕ]M then
5: return false
6: ActA← {σ ∈ DA (s (n)) | cons(s (n),σ ) ≤ e (n)}
7: for σ ∈ ActA do
8: O ← out (s (n),σ )
9: strat ← true
10: for s ′ ∈ O do
11: strat ← strat∧
12: until-strategy(node (n,σ , s ′), ⟨⟨Ab ⟩⟩ϕU ψ )

13: if strat then
14: return true
15: return false

When checking whether ⟨⟨Ab ⟩⟩ψ1U ψ2 or ⟨⟨A
b ⟩⟩ψ1 Rψ2 is true

in a state s , we examine paths whose length is bounded by the

smallest resource bound ba1 on the first resource in b (since every

action costs at least 1 unit of the first resource, any computation
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Algorithm 3 Labelling ⟨⟨Ab ⟩⟩ϕ Rψ

1: function release-strategy(n, ⟨⟨Ab ⟩⟩ϕ Rψ )
2: if s (n) ∈ [ψ ]M ∩ [ϕ]M then
3: return true
4: if s (n) ∈ [ψ ]M ∧

∃σ ∈ DA (s (n)) : cons(s (n),σ ) ≰ e (n) then
5: return true
6: if s (n) < [ψ ]M then
7: return false
8: ActA← {σ ∈ DA (s (n)) | cons(s (n),σ ) ≤ e (n)}
9: for σ ∈ ActA do
10: O ← out (s (n),σ )
11: strat ← true
12: for s ′ ∈ O do
13: strat ← strat∧
14: release-strategy(node (n,σ , s ′), ⟨⟨Ab ⟩⟩ϕ Rψ )

15: if strat then
16: return true
17: return false

can contain at most ba1 steps). An over-approximation of the size

of this search tree is Smina∈A (ba 1 ) .

Lemma 2.2. Algorithm 1 on inputM , ϕ terminates after at most
O ( |ϕ | × |M |k ) steps where k is the maximal value of the first resource
bound in ϕ.

Lemma 2.3. Algorithm 1 is correct.

Proof. The Boolean cases of the algorithm are standard.

The algorithm for ⟨⟨Ab ⟩⟩⃝ϕ returns all states from where there

is an action by A that costs less than b and all outcomes of this

action satisfy ϕ. Essentially in each such state there is a one-step

strategy satisfying ⟨⟨Ab ⟩⟩⃝ϕ. This is all we need because the rest

of actions on this strategy can be arbitrary; the computations that

are produced by the strategy do not need to satisfy any additional

constraints apart from being maximal, i.e., eventually running out

of resources (which they are guaranteed to do because of the first

resource).

The algorithm for ⟨⟨Ab ⟩⟩ϕU ψ performs forward and-or search

while making sure ϕ remains true, untilψ is reached. It returns true

if and only if it finds a strategy where each computation reaches a

ψ state before A run out of resources to carry on with the strategy,

and ϕ holds along the computation up to the pointψ becomes true.

Again actions after theψ state can be arbitrary.

The algorithm for ⟨⟨Ab ⟩⟩ϕ Rψ is similar to ⟨⟨Ab ⟩⟩ϕU ψ apart

from two points. One is that theψ state should also satisfy ϕ (the

invariant holds not just on the path to a ϕ state but in the ϕ state

itself). This is ensured by the test at line 2. The second difference

is that there is another way to make ⟨⟨Ab ⟩⟩ϕ Rψ true, which is to

run out of resources while maintaining ψ . This is the reason for

the test at line 4: if the invariant ψ is true in s and there is an

action σ in DA (s ) that would cause A to run out of resources, we

return true because for this computation λ, the strategy FA such

that FA (λ) = σ ensures that λ is a b-maximal computation (and it

satisfiesψ everywhere). □

Theorem 2.4. The model-checking problem for RB ± ATL# is de-
cidable in PSPACE (if resource bounds are written in unary).

Proof. From Lemmas 2.2 and 2.3 we have a model checking

algorithm that solves the model checking problem for RB ± ATL#.

The complexity which results from the time bound in Lemma 2.2

can be improved by observing that the depth first search can be

arranged using a stack and we only need to keep one branch at a

time on the stack. The size of the stack is bounded bymina∈A (ba1)
and hence is polynomial if b is represented in unary. □

3 RB ± ATL# WITH IMPERFECT
INFORMATION AND PERFECT RECALL

Agents often have to act under imperfect information, for example,

if states are only partially observable, an agent may be uncertain

whether it is in state s or s ′. This is represented in imperfect infor-

mation models as a binary indistinguishability relation on the set

of states for each agent a, ∼a : if a cannot distinguish s from s ′, we
have s ∼a s ′. This relation can easily be lifted to finite sequences of

states: if s1 ∼a s ′
1
, s2 ∼a s ′

2
, then s1s2 ∼a s ′

1
s ′
2
. An essential require-

ment for strategies under imperfect information is that they are

uniform: if agent a is uncertain whether the history so far is λ or λ′

(λ ∼a λ
′
), then the strategy for a should return the same action for

both: Fa (λ) = Fa (λ
′). Intuitively, the agent has no way of choosing

different actions in indistinguishable situations. A strategy FA for

a group of agents A is uniform if it is uniform for every agent in

A. In what follows, we consider strongly uniform strategies [22],

which require that a strategy work from all initial states that are

indistinguishable by some a ∈ A.
Unfortunately, model-checking for ATL under imperfect infor-

mation with perfect recall uniform strategies, ATLiR , is undecidable

for more than three agents [19]. It is known that the model checking

problem for ATLiR with bounded strategies is decidable, while for

finite strategies it is undecidable [23]. Bounded strategies are those

that are defined for sequences of states of at most some fixed length

k . In RB ± ATL#iR , there is no fixed bound on the size of strategies,

since the size of strategy depends on the formula and the model.

However, we can show that indeed the model checking problem for

RB ±ATL#iR with imperfect information and perfect recall strongly

uniform strategies is decidable.

The model checking algorithms are similar to those given for

RB ± ATL# in Section 2 in that they proceed by and-or depth first

search, storing information about the state of the search in a search

tree of nodes. However, in this case, the algorithms for Next, Until

and Release also take a stack (list) of ‘open’ nodes B, a set of ‘closed’
nodesC in addition to an RB±ATL# formula. B records the current

state of the search while C records ‘successful’ branches (rather

than all visited nodes). Uniformity is ensured if action choices

are consistent with those taken after ∼a sequences of states on

all successful paths explored to date: (n1, . . . ,nk ∼a n′
1
, . . . ,n′k

iff s (n1), . . . , s (nk ) ∼a s (n′
1
), . . . , s (n′k )). In addition, we assume

functions hd (u), tl (u) which return the head and tail of a list u, and
u ◦ v which concatenates the lists u and v . (We abuse notation

slightly, and treat sets as lists, e.g., use hd (u) where u is a set, to

return an arbitrary element of u, and use ◦ between a set and a list.)

4
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M, s |= ⟨⟨Ab ⟩⟩⃝ϕ under strong uniformity requires that there

exists a uniform strategy FA such that for all a ∈ A, if s ′ ∼a s ,
then for all b-maximal λ ∈ out (s ′, FA,b): |λ | > 1 and M, λ[2] |= ϕ.

Similarly, in truth conditions for ⟨⟨Ab ⟩⟩ϕU ψ and ⟨⟨Ab ⟩⟩ϕ Rψ we

require the existence of a uniform strategy where all b-maximal

computations starting from states s ′ indistinguishable from s by
any a ∈ A satisfy the Until (respectively, Release) formula.

Weak uniformity only requires the existence of a uniform strat-

egy from s . It is easy to modify the algorithms below to correspond

to weak uniformity semantics. In fact, the algorithm for ⟨⟨Ab ⟩⟩⃝ϕ
would become much simpler (identical to that for RB±ATL# in the

previous section).

Algorithm 4 Labelling ϕ0

1: function RB ± ATL#iR -label(M, ϕ0)
2: for ϕ′ ∈ Sub (ϕ0) do
3: case ϕ′ = p, ¬ϕ, ϕ ∨ψ standard, see [9]

4: case ϕ′ = ⟨⟨Ab ⟩⟩⃝ϕ
5: [ϕ′]M ← { s | s ∈ S ∧

next([node0 (s′, b ) : s′ ∼a∈A s],
{ }, ⟨⟨Ab ⟩⟩⃝ϕ ) }

6: case ϕ′ = ⟨⟨Ab ⟩⟩ϕ U ψ
7: [ϕ′]M ← { s | s ∈ S ∧

until([node0 (s′, b ) : s′ ∼a∈A s],
{ }, ⟨⟨Ab ⟩⟩ϕ U ψ ) }

8: case ϕ′ = ⟨⟨Ab ⟩⟩ϕ Rψ
9: [ϕ′]M ← { s | s ∈ S ∧

release([node0 (s′, b ) : s′ ∼a∈A s],
{ }, ⟨⟨Ab ⟩⟩ϕ Rψ ) }

10: return [ϕ0]M

Algorithm 5 Labelling ⟨⟨Ab ⟩⟩⃝ϕ

1: function next(B, C, ⟨⟨Ab ⟩⟩⃝ϕ)
2: if B = [ ] then
3: return true
4: n ← hd (B )
5: ActA ← {σ ∈ DA (s (n)) | cons(s (n), σ ) ≤ e (n) ∧

out (s (n), σ ) ⊆ [ϕ]M ∧ ∀a ∈ A
if ∃n′ ∈ C : p (n) · n ∼a p (n′)
then σa = acta (p (n′)[1]) }

6: for σ ∈ ActA do
7: if next(tl (B ), C ∪ {node (n, σ , hd (out (s (n), σ ))) },

⟨⟨Ab ⟩⟩⃝ϕ ) then
8: return true
9: return false

Lemma 3.1. Algorithm 4 terminates in at most O ( |ϕ | × |M |k+1)
steps, where k is the maximal value of the first resource bound in ϕ.

Proof. The algorithm for ⟨⟨Ab ⟩⟩⃝ϕ attempts to find an action

which works (achieves ϕ) from all states indistinguishable from s
by some agent in A. There are at most |S | such states, and at most

|M | possible actions to try. In the worst case (when no action works

in all states) we try every action in each state: O ( |M |2) steps.

As before, the algorithms for ⟨⟨Ab ⟩⟩ϕU ψ and ⟨⟨Ab ⟩⟩ϕ Rψ are at-

tempting to find a strategy of depth mina∈A (ba1), but now from all

Algorithm 6 Labelling ⟨⟨Ab ⟩⟩ϕU ψ

1: function until(B,C, ⟨⟨Ab ⟩⟩ϕU ψ )
2: if B = [ ] then
3: return true
4: n ← hd (B)
5: if s (n) ∈ [ψ ]M then
6: return until(tl (B),C ∪ {n}, ⟨⟨Ab ⟩⟩ϕU ψ )

7: if s (n) < [ϕ]M then
8: return false
9: ActA ← {σ ∈ DA (s (n)) | cons(s (n),σ ) ≤ e (n) ∧ ∀a ∈ A

if ∃n′ ∈ C : p (n) · n ∼a p (n′)[1, |p (n) · n |]
then σa = acta (p (n

′)[|p (n) · n | + 1])}
10: for σ ∈ ActA do
11: P ← {node (n,σ , s ′) | s ′ ∈ out (s (n),σ )}
12: if until(P ◦ tl (B),C, ⟨⟨Ab ⟩⟩ϕU ψ ) then
13: return true
14: return false

Algorithm 7 Labelling ⟨⟨Ab ⟩⟩ϕ Rψ

1: function release(B,C, ⟨⟨Ab ⟩⟩ϕ Rψ )
2: if B = [ ] then
3: return true
4: n ← hd (B)
5: if s (n) ∈ [ψ ]M ∩ [ϕ]M then
6: return release(tl (B),C ∪ {n}, ⟨⟨Ab ⟩⟩ϕ Rψ )
7: if s (n) < [ψ ]M then
8: return false
9: ActA ← {σ ∈ DA (s (n)) | ∀a ∈ A

if ∃n′ ∈ C : p (n) · n ∼a p (n′)[1, |p (n) · n |]
then σa = acta (p (n

′)[|p (n) · n | + 1])}
10: for σ ∈ ActA do
11: if cons(s (n),σ ) ≰ e (n) then
12: n′ ← node (n,σ , s ′ ∈ out (s (n),σ ))
13: if release(tl (B),C ∪ {n′}, ⟨⟨Ab ⟩⟩ϕ Rψ ) then
14: return true
15: else
16: P ← {node (n,σ , s ′) | s ′ ∈ out (s (n),σ )}
17: if release(P ◦ tl (B),C, ⟨⟨Ab ⟩⟩ϕ Rψ ) then
18: return true
19: return false

indistinguishable states and satisfying additional constraints of uni-

formity. Considering all indistinguishable states adds an additional

level (intuitively the root of the tree fromwhich all indistinguishable

initial states are reachable). Satisfying uniformity means having to

backtrack to a successful subtree to try a different choice of actions

even if the previous choice was successful (because the same choice

does not work in an indistinguishable branch on another tree). In

the worst case, we will consider all possible actions at each ofO (b)
levels of the search tree. We repeat this for every subformula (|ϕ |
many times). □

Lemma 3.2. Algorithm 4 is correct.
5
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Proof. We consider the cases of ⟨⟨Ab ⟩⟩ ⃝ϕ, ⟨⟨Ab ⟩⟩ϕU ψ and

⟨⟨Ab ⟩⟩ϕ Rψ .

The algorithm for ⟨⟨Ab ⟩⟩⃝ϕ places all states which are indistin-

guishable from the current state for one of the agents in A in the

open list B. This ensures that a successful strategy (single action σ
which is b-consistent and achieves ϕ) found in state s will be placed
in the closed list C , and in states s ′ ∼a s (indistinguishable for the
agent a) the same action σa will be attempted as part of the joint

action σ ′ by A. If this does not result in a successful strategy in s ′,
the algorithm will backtrack and try another action for a in s . The
algorithm returns true if and only if in all indistinguishable states,

an action by A is found which always results in a state satisfying

ϕ, is under the resource bound, and its ath component is the same

in all ∼a states. This guarantees that the algorithm found a one

step strategy to satisfy the ϕ. In order to extend it to an arbitrary

uniform strategy, we can simply select the first action in Da (s
′) for

all sequences ending in s ′ and all a ∈ A. This will ensure that all
a-indistinguishable sequences are assigned the same action.

⟨⟨Ab ⟩⟩ϕU ψ implements the same idea as above, but with respect

to multi-step strategies. Every time an action is selected on some

path p, if p′ ∼a p is in the closed list C , then a’s action after p
is selected to be the same as that selected after p′. If this is not
successful then eventually we will fail back to p′ and try a different

action there. If the algorithm returns true, then we are guaranteed

that the strategy contained in C is uniform. We can easily extend

the strategy contained in C to a uniform strategy, since we do not

need to achieve any objectives after satisfyingψ .

⟨⟨Ab ⟩⟩ϕ Rψ is similar to ⟨⟨Ab ⟩⟩ϕU ψ , but now we have an addi-

tional complication that actions selected to ‘run out of resources’

need to be in the closed list since they should also satisfy unifor-

mity. This is ensured on lines 11-14 of the algorithm (we add a path

ending with an ‘expensive’ action σ and an arbitrary successor n′

to the closed list). □

Theorem 3.3. The model-checking problem for RB ± ATL# with
imperfect information and perfect recall is decidable in EXPSPACE if
the resource bounds are represented in unary.

Proof. In addition to the space required for the stack, we also

need to store the closed list C . In the worst case, the closed list

will contain all possible sequences of states of length at most

mina∈A (ba1), which is O ( |S |k ), where k is the maximal value of

the first resource bound in ϕ. □

4 RAL#

In this section we define a diminishing resource version of resource
agent logic (RAL#) following [12], with modifications required for

our setting (e.g., no infinite endowments).

The logic is defined over a set of agents Aдt , a set of resources
types Res , and a set of propositional symbols Π.

An endowment (function) η : Aдt × Res → N assigns resources

to agents; ηa (r ) = η(a, r ) is the amount of resource agent a has of

resource type r . En denotes the set of all possible endowments.

The formulas of RAL
#
are defined by:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ϕ | ⟨⟨A⟩⟩↓B⃝ϕ | ⟨⟨A⟩⟩
η
B⃝ϕ | ⟨⟨A⟩⟩

↓

BϕUψ |

⟨⟨A⟩⟩
η
BϕUψ | ⟨⟨A⟩⟩

↓

BϕRψ | ⟨⟨A⟩⟩
η
BϕRψ

where p ∈ Π is a proposition, A,B ⊆ Aдt are sets of agents, and η
is an endowment. A are called the proponents, and B the (resource-

bounded) opponents.

Unlike in RB±ATL#, in RAL# there are two types of cooperation

modalities, ⟨⟨A⟩⟩↓B and ⟨⟨A⟩⟩
η
B . In both types of cooperation modality,

the actions performed by agents in A ∪ B consume and produce

resources (actions by agents in Aдt \ (A ∪ B) do not change their

resource endowment). The meaning of ⟨⟨A⟩⟩
η
Bφ is otherwise the

same as in RB ± ATL
#
. The formula ⟨⟨A⟩⟩↓Bφ on the other hand

requires that the strategy uses the resources currently available to

the agents.

The models of RAL
#
are resource-bounded concurrent game

structures with diminishing resource (RB-CGS
#
). Strategies are also

defined as for RB ± ATL
#
. However, to evaluate formulas with a

down arrow, such as ⟨⟨A⟩⟩↓B⃝φ, we need the notion of resource-
extended computations. A resource-extended computation λ ∈ (S ×
En)+ is a non-empty sequence over S × En such that the restriction

to states (the first component), denoted by λ |S , is a path in the

underlying model. The projection of λ to the second component of

each element in the sequence is denoted by λ |En.
A (η, sA,B)-computation is a resource-extended computation λ

where for all i = 1, . . . with λ[i] := (si ,η
i ) there is an action profile

σ ∈ d (λ |S [i]) such that:

(1) η0 = η (η describes the initial resource distribution);

(2) FA (λ |S [1, i]) = σA (A follow their strategy);

(3) λ |S [i + 1] = δ (λ |S [i],σ ) (transition according to σ );
(4) for all a ∈ A∪B and r ∈ Res : ηia (r ) ≥ consr (λ |S [i],σa ) (each

agent has enough resources to perform its action);

(5) for alla ∈ A∪B and r ∈ Res :ηi+1a (r ) = ηia (r )+prodr (λ |S [i],σa )−
consr (λ |S [i],σa ) (resources are updated);

(6) for all a ∈ Aдt \ (A ∪ B) and r ∈ Res: ηi+1a (r ) = ηia (r ) (the
resources of agents not in A ∪ B do not change).

The (η,B)-outcome of a strategy FA in s , out (s,η, FA,B), is defined as
the set of all (η, FA,B)-computations starting in s . Truth is defined

over a modelM , a state s ∈ S , and an endowment η.
The semantics is given by the satisfaction relation |= where the

cases for propositions, negation and conjunction are standard and

omitted:

M, s,η |= ⟨⟨A⟩⟩↓B⃝φ iff there is a strategy FA forA such that for

all λ ∈ out (s,η, FA,B), |λ | > 1 andM, λ |S [2], λ |En[2] |= φ

M, s,η |= ⟨⟨A⟩⟩
ζ
B⃝φ iff there is a strategy FA forA such that for

all λ ∈ out (s, ζ , FA,B), |λ | > 1 andM, λ |S [2], λ |En[2] |= φ

M, s,η |= ⟨⟨A⟩⟩↓BφUψ iff there is a strategy FA for A such that

for all λ ∈ out (s,η, FA,B), there exists i with 1 ≤ i ≤ |λ |
and M, λ |S [i], λ |En[i] |= ψ and for all j with 1 ≤ j < i ,
M, λ |S [j], λ |En[j] |= φ

M, s,η |= ⟨⟨A⟩⟩
ζ
BφUψ iff there is a strategy FA for A such that

for all λ ∈ out (s, ζ , FA,B), there exists i with 1 ≤ i ≤ |λ |
and M, λ |S [i], λ |En[i] |= ψ and for all j with 1 ≤ j < i ,
M, λ |S [j], λ |En[j] |= φ

M, s,η |= ⟨⟨A⟩⟩↓BφRψ iff there is a strategy FA for A such that

for all λ ∈ out (s,η, FA,B), either there exists i with 1 ≤

i ≤ |λ | and M, λ |S [i], λ |En[i] |= ψ ∧ φ and for all j with
1 ≤ j < i ,M, λ |S [j], λ |En[j] |= ψ ; or, for all j with 1 ≤ j ≤ |λ |,
M, λ |S [j], λ |En[j] |= ψ

6
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M, s,η |= ⟨⟨A⟩⟩
ζ
BφRψ iff there is a strategy FA for A such that

for all λ ∈ out (s, ζ , FA,B), either there exists i with 1 ≤

i ≤ |λ | and M, λ |S [i], λ |En[i] |= ψ ∧ φ and for all j with
1 ≤ j < i ,M, λ |S [j], λ |En[j] |= ψ ; or, for all j with 1 ≤ j ≤ |λ |,
M, λ |S [j], λ |En[j] |= ψ

The model checking algorithms for RAL
#
are similar to those

given for RB ± ATL
#
in Section 2 in that they proceed by and-or

depth first search. However, in this case, the nodes in the search tree

also include information about the current proponent and (resource-

bounded) opponent coalitions, and the functions that construct

nodes are redefined as node0 (s,b,A,B) and node(n,σ , s ′,A,B)where
A are the proponents and B are the resource-bounded opponents.

The model checking algorithm for RAL
#
is shown in Algorithm 8,

and takes as input amodelM , a formulaϕ, and an initial endowment

η, and labels the set of states [ϕ]
η
M , where [ϕ]

η
M = {s |M, s,η |= ϕ} is

the set of states satisfying ϕ. RAL#-label simply calls the function

strategy to label states with ϕ. pr and op are functions that return

the proponents A ⊆ Aдt and the resource-bounded opponents

B ⊆ Aдt respectively if ϕ is of the form ⟨⟨A⟩⟩∗
B
⃝ψ , ⟨⟨A⟩⟩∗

B
ψ1Uψ2,

⟨⟨A⟩⟩∗
B
ψ1Rψ2 where ∗ is either ↓ or an endowment, or ∅ otherwise.

Algorithm 8 Labelling ϕ

1: procedure RAL#-label(M, ϕ, η)
2: [ϕ]ηM ← { q | q ∈ S ∧

strategy(node0 (q, η, pr (ϕ ), op(ϕ )), ϕ ) }

The function strategy is shown in Algorithm 9 and proceeds

by depth-first and-or search. We process each coalition modality in

turn, starting from the outermost modality. The logical connectives

are standard, and simply call strategy on the subformulas. Each

temporal operator is handled by a separate function: next for⃝ψ ,
until for ϕUψ , and release for ϕRψ .

Algorithm 9 Strategy

1: function strategy(n, ϕ)
2: case ϕ = p ∈ Π
3: return s (n) ∈ π (p )
4: case ϕ = ¬ψ
5: return ¬strategy(node0 (s (n), e (n), pr (n), op (n)), ψ )

6: case ϕ = ψ1 ∨ψ2

7: return strategy(node0 (s (n), e (n), pr (n), op (n)), ψ1) ∨
strategy(node0 (s (n), e (n), pr (n), op (n)), ψ2)

8: case ϕ = ⟨⟨A⟩⟩↓B ⃝ψ
9: return next(node0 (s (n), e (n), A, B ), ϕ )
10: case ϕ = ⟨⟨A⟩⟩ζB ⃝ψ
11: return next(node0 (s (n), ζ , A, B ), ϕ )
12: case ϕ = ⟨⟨A⟩⟩↓Bψ1 Uψ2

13: return until(node0 (s (n), e (n), A, B ), ϕ )
14: case ϕ = ⟨⟨A⟩⟩ζB ψ1 Uψ2

15: return until(node0 (s (n), ζ , A, B ), ϕ )
16: case ϕ = ⟨⟨A⟩⟩↓Bψ1Rψ2

17: return release(node0 (s (n), e (n), A, B ), ϕ )
18: case ϕ = ⟨⟨A⟩⟩ζB ψ1Rψ2

19: return release(node0 (s (n), ζ , A, B ), ϕ )

The function next for formulas of types ⟨⟨A⟩⟩↓B ⃝ϕ and ⟨⟨A⟩⟩
ζ
B ⃝ϕ

is shown in Algorithm 10 and is straightforward. We simply check if

there is an action ofA that is possible given the current endowment

(lines 2–4), and where in all outcome states A has a strategy to

enforce ϕ (lines 6–10). Note that the recursive call (line 8) is to

strategy, to correctly determine the endowments for the new

search in both the case where ϕ specifies a fresh endowment or the

resources currently available to the agents (i.e., down arrow).

Algorithm 10 Next (both types of modalities)

1: function next(n, ⟨⟨A⟩⟩∗
B
⃝ϕ)

2: ActA ← {σ ′ ∈ DA (s (n)) | cons(σ ′) ≤ eA (n) }
3: for σ ′ ∈ ActA do
4: ActAдt ← {σ ∈ D (s (n)) | σA = σ ′∧

cons(σB ) ≤ eB (n) }
5: strat ← true
6: for σ ∈ ActAдt do
7: s′ ← δ (s (n), σ )
8: strat ← strat ∧ strategy(node (n, σ , s′, A, B ), ϕ )
9: if strat then
10: return true
11: return false

The function until for formulas of types ⟨⟨A⟩⟩↓B ϕUψ and ⟨⟨A⟩⟩
ζ
B ϕUψ

is shown in Algorithm 11. If A have a strategy to enforceψ , we re-
turn true (lines 2–3). We then check if it is possible to enforce ϕ in n,
and terminate the search with false if it is not (lines 4–5). Otherwise

the search continues. Each action available at s (n) is considered in

turn (lines 6–14). For each action σ ′ ∈ ActA, we check whether a

recursive call of the algorithm returns true in all outcome states s ′

of σ ′ (i.e., σ ′ is part of a successful strategy). If such a σ ′ is found,
the algorithm returns true. Otherwise the algorithm returns false.

The function release for formulas of types ⟨⟨A⟩⟩↓B ϕRψ and ⟨⟨A⟩⟩
ζ
B ϕRψ

is similar (see Algorithm 12).

Algorithm 11 Until (both types of modalities)

1: function until(n, ⟨⟨A⟩⟩∗
B
ϕ Uψ )

2: if strategy(n, ψ ) then
3: return true
4: if ¬ strategy(n, ϕ ) then
5: return false
6: ActA ← {σ ′ ∈ DA (s (n)) | cons(σ ′) ≤ eA (n) }
7: for σ ′ ∈ ActA do
8: ActAдt ← {σ ∈ D (s (n)) | σA = σ ′∧

cons(σB ) ≤ eB (n) }
9: strat ← true
10: for σ ∈ ActAдt do
11: s′ ← δ (s (n), σ )
12: strat ← strat ∧

until(node (n, σ , s′, A, B ), ⟨⟨A⟩⟩∗
B
ϕ Uψ )

13: if strat then
14: return true
15: return false

Lemma 4.1. Algorithm 9 terminates in O ( |M | |ϕ | ) steps, where the
bounds in ϕ are written in unary.

7
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Algorithm 12 Release (both types of modalities)

1: function release(n, ⟨⟨A⟩⟩∗
B
ϕRψ )

2: if ¬strategy(n, ψ ) then
3: return false
4: if strategy(n, ϕ ) then
5: return true
6: if ∃ σ ∈ DA s.t. cons(s (n), σ ) ≰ eA (n)) then
7: return true
8: ActA ← {σ ′ ∈ DA (s (n)) | cons(σ ′) ≤ eA (n) }
9: for σ ′ ∈ ActA do
10: ActAдt ← {σ ∈ D (s (n)) | σA = σ ′∧

cons(σB ) ≤ eB (n) }
11: strat ← true
12: for σ ∈ ActAдt do
13: s′ ← δ (s (n), σ )
14: strat ← strat ∧

release(node (n, σ , s′, A, B ), ⟨⟨A⟩⟩∗
B
ϕRψ )

15: if strat then
16: return true
17: return false

Proof. The only difference between the RAL
#
algorithms and

the algorithms in section 2 is the fact that in the case of RAL
#

we cannot label states with subformulas. For example, we cannot

find states satisfying ⟨⟨A⟩⟩↓BϕUψ because we do not know which

endowment the ↓ refers to. When verifying a formula with non-

propositional subformulas, for example ⟨⟨A⟩⟩↓BϕUψ again, where ϕ
andψ are not propositional, we have tomake recursive calls to check

whether the current state satisfiesϕ orψ with the current endowment.
Hence the checks for strategy(n,ϕ) instead of checking whether

s (n) ∈ [ϕ]M . However the recursive calls are always to formulas of

lower complexity, and it is easy to show that in the propositional

case they do terminate, and that under the inductive assumption

if lower complexity calls terminate, then the calls to ⟨⟨A⟩⟩∗
B
⃝ϕ,

⟨⟨A⟩⟩∗
B
ϕUψ and ⟨⟨A⟩⟩∗

B
ϕRψ terminate.

The algorithm again performs depth first and-or search, but now

up to the depth determined by the nestings of modalities in ϕ: we
need to take the sum of the minimal bounds for the first resource

occurring in the endowment of some resource bounded agent in

nested formulas to find the maximal depth of the tree. We can

ignore ↓ endowments because they will use the amount of the first

resource remaining from the outer modalities. □

Lemma 4.2. Algorithm 9 is correct.

Proof. Assuming that calls to strategy(n,ϕ) terminate and

have the same effect as checking whether s (n) ∈ [ϕ]M , the algo-

rithms are the same as for RB ± ATL
#
. The only small difference

is that we remember the current endowment and pass it to the ↓

modalities as if it was an explicit bound b in RB ± ATL#. □

Theorem 4.3. The model-checking problem for RAL# is decidable
in PSPACE (if resource bounds are written in unary).

Proof. From the two lemmas above it follows that Algorithm 9

is a terminating and correct model-checking algorithm for RAL
#
.

The space it is using on the stack is polynomial in the size of the for-

mula (it is the sum of nested resource bounds on the first resource

for the minimally endowed agents). After at mostO (k ) steps, where
k is the maximal value of the first resource bound in ϕ, the endow-
ment becomes negative for one of the agents, and the algorithm

terminates. □

5 CONCLUSION
In this paper we studied resource logics over models with a dimin-

ishing resource. We gave new and simple model-checking algo-

rithms for the versions of RB±ATL, RB ± ATLiR and RAL with a

diminishing resource. We believe that settings where one of the

resources is always consumed are quite common, and our results

may therefore be of practical interest. It was known that the model

checking problem for RB±ATL is decidable, but our complexity

result for RB ± ATL
#
is new. Decidability of the model checking

problem for RAL follows from a more general result on bounded

models from [12], but no model checking algorithmwas given there.

The model checking algorithm for RAL
#
is different from the algo-

rithm for the decidable fragment of RAL presented in [3] because

it works for the full RAL rather than just for the positive fragment

of proponent-restricted RAL in [3].
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