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ABSTRACT
Logical approaches to reasoning about agents often rely on ideali-
sations about belief ascription and logical omniscience which make
it difficult to apply the results obtained to real agents. In this pa-
per, we show how to ascribe beliefs and an ability to reason in an
arbitrary decidable logic to an agent in a computationally grounded
way. We characterise those cases in which the assumption that an
agent is logically omniscient in a given logic is ‘harmless’ in the
sense that it does not lead to making incorrect predictions about the
agent, and show that such an assumption is not harmless when our
predictions have a temporal dimension: ‘now the agent believes p’,
and the agent requires time to derive the consequences of its be-
liefs. We present a family of logics for reasoning about the beliefs
of an agent which is a perfect reasoner in an arbitrary decidable
logic L but only derives the consequences of its beliefs after some
delay ∆. We investigate two members of this family in detail, L∆

in which all the consequences are derived at the next tick of the
clock, and L∗

∆ in which the agent adds at most one new belief to
its set of beliefs at every tick of the clock, and show that these are
sound, complete and decidable.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]; F.3 [Logics and Meanings of Pro-
grams]

General Terms
Theory

Keywords
Formalisms and logics

1. INTRODUCTION
A major goal in intelligent agent research is the formal mod-

elling of agent systems. Such an account is key both in deepening
our understanding of the notion of agency, e.g., the relationships
between agent architectures, environments and behaviour, and for
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the principled design of agent systems. A common approach is to
model the agent in some logic and prove theorems about the agent’s
behaviour in that logic. It is perhaps most natural to reason about
the behaviour of the agent in an epistemic logic, and there has been
a considerable amount of work in this area, for example, [15, 8, 14,
18, 21, 9, 17, 28, 25, 30]. Epistemic notions such as knowledge and
belief provide a compact and powerful way of reasoning about the
structure and behaviour of agents [16]. Such an approach is useful
as an abstraction tool even when we have perfect knowledge of the
design of the system, but can also be applied when the system in
question may not or is known not to employ intentional notions.

Approaches based on epistemic logic must address two main
problems: the problem of correctly ascribing beliefs to the agent,
and the problem of logical omniscience.

The problem of belief ascription is concerned with the difficulty
of actually knowing what the agent’s beliefs are. Many agent de-
signs do not make use of an explicit representation of beliefs within
the agent. For example, the behaviour of an agent may be con-
trolled by a collection of decision rules or reactive behaviours which
simply respond to the agent’s current environment. However, when
modelling such agents, it can still be useful to view them as having
beliefs. For example, when modelling a behaviour-based agent we
may say that “the agent believes there is an obstacle to the left” and
“if the agent believes there is an obstacle to the left, it will turn to
the right”. However, for this to be possible, we need some princi-
pled way of deciding what the agent believes.

In such cases one approach is to view the agent as an intentional
system, that is, we ascribe to it the beliefs and goals it ought to
have, given what we know of its environment, sensors and (puta-
tive) desires. This approach, which Dennett [4, 5] calls “adopting
the intentional stance”, allows us to ascribe propositional attitudes
to agent systems which do not explicitly represent beliefs, without
having to know anything about the agent’s state or architecture. In
many cases this works tolerably well; for example, the predictions
we can make by ascribing a belief that there is an obstacle to the
left to a behaviour-based agent with an ‘avoid obstacles’ behaviour
will be similar to the behaviour exhibited by the system. In other
cases it is more problematic, largely due to the arbitrary nature of
intentional attribution to such minimal intentional systems. Given
only the agent’s desires and its environment, we must assume some
sort of design for the agent and work backwards to what sorts of
events in the environment are significant, and hence the sorts of
percepts and beliefs it ‘ought’ to have. The more we know about
the design of an agent, e.g., what sorts of sensors it has, the easier
it is to choose between alternative competing designs, and the sorts
of beliefs the agent ‘ought’ to have.

The second problem is that of logical omniscience. The con-
cept of logical omniscience was introduced by Hintikka in [11],



and is usually defined as the agent knowing all logical tautologies
and all the consequences of its knowledge. Logical omniscience
is problematic when attempting to build realistic models of agent
behaviour, as closure under logical consequence implies that delib-
eration takes no time.

Most logical approaches to reasoning about agents rely on ideali-
sations about belief ascription and logical omniscience which make
it difficult to apply the results obtained to real agents. In many
cases, belief ascription is not grounded in the state of the agent;
rather beliefs are simply posited of the agent. Moreover, agents are
typically modelled as logically omniscient, with the result that it is
impossible to say when a real, resource bounded agent will hold
a particular belief or even whether it ever does. For example, the
influential Belief, Desire, Intention (BDI) framework of Georgeff
and Rao [21] models agents as logically omniscient.

In this paper we present a new approach to modelling agents
which addresses these problems. We distinguish between beliefs
and reasoning abilities which we ascribe to the agent (‘the agent’s
logic’) and the logic we use to reason aboutthe agent. In this we
follow, e.g., [15, 12, 10]. Our approach grounds the ascription of
belief in the state of the agent and allows us to explicitly model
the computational delay involved in updating the agent’s state. In
the spirit of [29], we would like to design a logic to reason about
the agent’s beliefs which is grounded in a concrete computational
model. However, unlike [29, 23] we choose not to interpret the
agent’s beliefs as propositions corresponding to sets of possible
states or runs of the agent’s program, but syntactically, as formu-
las ‘translating’ some particular configuration of variables in the
agent’s internal state. One of the consequences of this choice is
that we avoid modelling the agent as logically omniscient. In rep-
resenting beliefs syntactically and explicitly modelling computa-
tional delay in deriving consequences our approach has some sim-
ilarities with the bounded-resources approach of [6].

In section 2 we motivate our approach. We develop a precise
characterisation of those agents for whom the assumption of logi-
cal omniscience is harmless, in the sense that assuming the agent
is logically omniscient does not lead to incorrect belief ascription.
Then we show that for some agents (those performing some com-
putations on their internal state) the logical omniscience assump-
tion may lead to incorrect predictions concerning their beliefs. In
section 3 we introduce a logic L∆ which remedies the problem by
introducing an explicit computational delay into the language of
epistemic logic. The agent is still a perfect reasoner in the sense
that it can derive all consequences of its beliefs (from a finite set of
potential consequences) but this happens after a fixed delay. In sec-
tion 4 we relax this assumption by introducing a logic L∗

∆ where
each consequence (again from a fixed finite set) will be derived af-
ter a finite number of delays. Finally we define a family of logics
‘between’ L∆ and L∗

∆ each with a different upper bound on the
number of delays before all consequences are derived, sketch how
those logics can be used to model agents at different levels of ab-
straction, and outline directions for further work.

2. BELIEF ASCRIPTION AND LOGICAL
OMNISCIENCE

In this section we characterise situations when the assumption
that an agent is logically omniscient is harmless in the sense that it
does not lead to making incorrect predictions about the agent. We
call an agent logically omniscient(in some logic) if the agent’s be-
liefs are closed under logical consequence in that logic. For exam-
ple, if the agent’s beliefs are modelled in S4, the agent is logically

omniscient since its beliefs are closed under the S4 consequence
relation.

In this section we investigate the consequences of assuming that
the agent is logically omniscient when reasoning about the agent’s
beliefs in an epistemic logic E. Identifying the problems result-
ing from this assumption for a certain kind of agent, we proceed
in the next section to introduce an explicit temporal dimension in
our epistemic logic and to make a distinction between the agent’s
‘internal logic’ and the external epistemic logic logic in which we
reason about the agent’s beliefs .

We begin with a simple agent which we call agent1, which we
model as two functions and some internal state (see Figure 1).
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Figure 1: Agent1

The agent’s state contains all the internal representations which
determine the behaviour of the agent. Typically, some parts of the
state can be interpreted as referring to (real or hypothetical) ob-
jects or events in the environment, e.g., that there is an obstacle
dead ahead, or to properties of the agent itself, e.g., the level of
the agent’s battery. In such cases, changes in the environment or
the agent will result in changes in the internal state of the agent in
some more or less predictable way (depending on how noisy the
agent’s sensors are etc.)

The functions are the perception function, obs , which takes the
percept(s) provided by the agent’s sensors and the current state and
returns a new state updated by the percepts. The second function is
the action selection function, act , which takes the current state and
returns an (external) action to perform. The perception function
maps from events in the environment to representational states in
the agent. The action selection function maps from states in the
agent to events in the environment.

For the moment, we make two further assumptions: (I) that the
perception function obs simply updates the relevant variables in the
agent’s state, e.g., it doesn’t do any computation on the state such
as belief revision or problem solving; and (II) that the actions don’t
modify the state of the agent.1

At each cycle the agent performs the computation: act(obs(o, s)),
i.e., it updates its state s on the basis of its percepts o and chooses
which action to perform on the basis of this new state. To correctly
predict the evolution of the agent’s beliefs and hence its actions, we
need to be able to ascribe beliefs to the agent after its state has been
updated by its percepts. In what follows we show how to ascribe
beliefs to the agent in a computationally grounded way.

We begin by assuming that the agent’s state does not change in
the interval between perception and action selection. Suppose the
state s is defined by the values of the variables x1, ..., xk, for exam-
ple: the value of the temperature sensor variable xt is 20, the value
of the left collision detector xl is 0 and the value of the right col-
lision detector xr is 1, etc. Based on those values, we can ascribe
1Below we relax some of the restrictions on agent1.



beliefs about the external world to the agent: for example, based on
xt = 20 we ascribe to the agent a belief that the outside tempera-
ture is 20◦ C; based on xl = 0 and xr = 1 we ascribe the agent a
belief that there is an obstacle to the right and so on. Note that this
‘translation’ is fixed and does not depend on the truth or falsity of
the propositions in the real world.

Assuming that each variable can take only a finite number of
values, we fix the set of atomic propositions which correspond to
ascribable beliefs to be P = {p1, ..., pm}. There is a mapping from
the state s of the agent to set of propositions it ‘believes’ in: P+(s)
assigns some propositions from P as the agent’s positive beliefs,
P+(s) ⊆ P . The mapping P−(s) assigns some propositions from
P as the agent’s negative beliefs (the agent believes the negation of
the propositions), P−(s) ⊆ P . We assume P+(s) ∪ P−(s) ⊆ P
and P+(s)∩P−(s) = ∅. This model of belief ascription (an agent
only has beliefs in atomic formulas or their negations) is very basic.
We consider it here not for its intrinsic interest but because it allows
us to make a point concerning the logical omniscience assumption.
In the remainder of this section we show that, under this model of
belief ascription, the logical omniscience assumption is harmless,
while if we extend it in a natural way to arbitrary formulas (e.g., by
adding implications) we get potentially paradoxical results.

We reason about our model of the agent in a logic E contain-
ing a belief operator B. We denote the positive beliefs we ascribe
to the agent as Bel+(s) = {Bp : p ∈ P+(s)} and the agent’s
negative beliefs as Bel−(s) = {B¬p : p ∈ P−(s)}. The set of
ascribed beliefs is then Bel(s) = Bel+(s) ∪ Bel−(s). If we rea-
son in say, S4, we can derive infinitely many more formulas about
beliefs the agent holds: for example, Bp1 ∨Bp2, Bp1 ∈ Bel+(s)
(which many people would consider harmless), Bp1 ∨¬Bp1 (tau-
tology: harmless as well),BBp1 (perhaps less intuitive), and if we
don’t restrict the language to just p1, ..., pm, we can derive some
clearly irrelevant statements such as B(p1 ∨ φ) where φ says that
the moon is made out of green cheese. Apart from some of those
consequences being counterintuitive, can we say that they are really
harmful in any precise sense?

One criterion would be: if we translate from the set of the derived
consequences back into the statements about the agent’s state, can
we derive anything which does not agree with the actual state of the
agent?

Let P+(s) include p1, . . . , pn, and P−(s) include ¬pn+1,. . . ,
¬pn+k. Consider the set of formulas ConsE(Bel(s)) (ConsE for
short) which are all the consequences we can derive in E concern-
ing the agent’s beliefs at s. ConsE is closed under logical con-
sequence in E and is consistent provided that E is a reasonable
modal logic of belief.

Definition 1. E is a reasonable modal logic of beliefif it is con-
sistent and the modality B in E has the following properties:

1. Bφ is interpreted in a way which depends only on the in-
terpretation of propositional variables in φ and not any other
propositional variables;

2. if φ is an atomic formula or a negation of an atomic formula,
Bφ can be true as well as false; and

3. Bp does not logically entail B¬p and vice versa.

Many epistemic logics including S4 and S5 fall under this defi-
nition. One can come up with definitions of modal logics which
violate any of the conditions but the interpretation of B would be
very far from the usual understanding of ‘belief’. For example,
the last condition would be violated if B were interpreted as ‘has
probability 1/2’.

Now we can formulate precisely what we mean by saying that
the assumption that an agent is logically omniscient in E is harm-
less.

Definition 2. The assumption that an agent is logically omni-
scient in E is harmlessif Bp ∈ ConsE(Bel(s)) implies Bp ∈
Bel+(s) and B¬p ∈ ConsE(Bel(s)) implies B¬p ∈ Bel−(s).

THEOREM 1. For agents which only have beliefs in atomic for-
mulas or their negations, the assumption of being logically omni-
scient in any reasonable modal logic of belief is harmless.

PROOF. We need to prove that neither of the following conse-
quences holds:

Bp1, ..., Bpn, B¬pn+1, ..., B¬pn+k |=E Bpi

unless i ∈ {1, . . . , n} and

Bp1, ..., Bpn, B¬pn+1, ..., B¬pn+k |=E B¬pi

unless i ∈ {n + 1, . . . , n + k}. The first consequence would
hold if for all interpretations of p1, . . . , pn+k, if Bp1, . . . , Bpn,
B¬pn+1, . . . , B¬pn+k then Bpi. If i �∈ {n + 1, . . . , n + k} the
truth value of Bpi is completely independent from the truth values
of the premises by the first condition on reasonable modal logics.
By the second condition there is an interpretation of p1, . . . , pn+k

such that Bp1, . . . , Bpn, B¬pn+1, . . . , B¬pn+k are true and Bpi

is false. If i ∈ {n + 1, . . . , n + k} we still know (by the third
condition) that there is an interpretation under which B¬pi is true
and Bpi false. Hence the first consequence can’t hold. A similar
argument works for the second consequence.

In the model of belief ascription described above, any agent which
satisfies assumptions (I) and (II) can be viewed as logically omni-
scient in any reasonable logic of belief. For example, the simple
reactive agents defined in [22] can be modelled as ideal reasoners
without ascribing incorrect beliefs.

Agent1 is still very simple. It might be termed a purely reactive
agent in the sense that it will always do the same thing in the same
situation (assuming obs is perfect and act is deterministic). Many
agents do additional processing, for example, an agent may decide
whether to ‘believe’ its percepts on the basis of its current state or it
may derive consequences of its beliefs when combining inputs from
several sensors. Similarly, when selecting an action to perform, the
agent may deliberate about the merits of various possible actions
or sequences or actions. In the simplest case, the agent may just
record that it has performed an action ai, so that it can try some
other action if ai doesn’t have the desired effect. Such processing
can be viewed as the result of internal actionswhich modify the
agent’s state. Agents with internal actions violate assumptions (I)
and (II).

We therefore define a new agent, agent2, which incorporates
an additional inference step modelled by a belief update function
inf which takes an agent state as argument and returns a new state
(see Figure 2). At each cycle, agent2 performs the computation:
act(inf (obs(o, s))), i.e., it updates its state s on the basis of its
percepts o, derives any additional consequences of its new beliefs
about its percepts and then selects an action to perform on the basis
of this new state.

Note that agent2 may believe different things at different times,
since Bel(inf (s)) �= Bel(s). For example, after inf is evaluated
the agent may start ‘believing’ an extra formula p. We need to
model this ability in some way in the epistemic logic E. However,
if we continue to only ascribe beliefs in atomic formulas or their
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Figure 2: Agent2

negations to the agent, we cannot make any predictions concerning
such new beliefs. If we expandBel(s) with some rules which allow
us to derive new beliefs, e.g. Bq → Bp, then we can derive Bp
from Bq and Bp would be added to ConsE(Bel(s)). However
this would result in incorrect belief ascription at s, since p only
appears in Bel(inf (s)). While beliefs in rules such as Bq → Bp
cannot be grounded in the agent’s state in the same way as beliefs
in atomic propositions, in other work [1] we show how to ground
beliefs in arbitrary formulas in the state of an agent.

The assumption that agent2 is logically omniscient (or thatBel(s)
is closed under logical consequence in E) is not harmless. The
evaluation of the belief update function inf will take some time, say
∆. If belief update starts at time t0, then for times t0 < t < t0+∆,
the assumption that the agent is logically omniscient will result in
the ascription of incorrect beliefs to the agent, specifically those
beliefs it has yet to derive.

To solve this problem, in the next section we make explicit a dis-
tinction between the agent’s internal logic and the epistemic logic
we use to reason about the agent’s beliefs, and introduce an explicit
temporal dimension to the latter logic.

3. A LOGIC FOR A PERFECT REASONER
WITH A FIXED COMPUTATIONAL DE-
LAY

In this section we consider a logic L∆ for delayed belief. Strictly
speaking, L∆ is a family of logics parameterised by a decidable
logic L which is the agent’s internal logic, for example, classical
propositional logic. (The material in this section and the next ex-
tends that in [2].) We assume there is a mapping from the belief up-
date function inf to a logic L (set of inference rules) which mimics
inf in the following way: if inf (s) = s′ then Bel(s) �L Bel(s

′).
The relation Φ �L ψ (‘Φ implies ψ in L’) between Φ and ψ is
decidable if inf terminates after a fixed number of steps and there
are fintely many agent states. The assumption that L exists and
can be modelled this way is non-problematic if the agent really im-
plements some (restricted) reasoning in a logic, as for example the
agents considered in [12, 17]. If the agent is just an arbitrary pro-
gram resetting some variables according to a set of instructions, this
is more problematic, but still possible.

InL∆, after a fixed delay ∆ the agent believes in allL-consequen-
ces of its beliefs at the previous step. The intuition underlying the
notion of delayed belief is that an agent is able to draw all infer-
ences from its beliefs, but needs time to derive them, so it does
not believe the consequences instantaneously. The delay opera-
tor is not very expressive but it allows us to state some simple
properties of a reasoner which requires some time to derive con-
sequences, and nestings of delay operators can express the fact that

some conclusions will be reached later than others: for example,
Bφ ∧ ∆B(φ → ψ) → ∆∆Bψ is true if L contains modus po-
nens. In what follows we restrict the set of L-consequences to be
a subset of some large but finite set C of ‘potentially interesting’
formulas. For example, if L is classical propositional logic and the
language contains finitely many propositional variables, C could be
all formulas in disjunctive normal form. We assume that the set of
beliefs grows monotonically since we model just one application of
the inf function.

The language L∆ consists of a finite set P of propositional vari-
ables, p1, . . . , pm, the usual boolean connectives ¬,∧,→, . . . and
two unary modalities: B which should be read as ‘Believes’ and
∆, standing for ‘After a delay’.2 A well formed formula is defined
as usual: p|¬φ|φ ∧ ψ|∆φ|Bφ with the proviso that ∆ does not
occur in φ in the clause for Bφ. We make this requirement since
statements concerning the agent’s computational delay do not cor-
respond to anything in the agent’s internal state and belong to the
external language describing the agent’s reasoning. From the tech-
nical point of view this restriction is not important and all the proofs
below will go through if the syntax is not restricted. We denote the
set of all well formed formulas as Form and the set of all po-
tentially interesting consequences the agent may derive as C. We
require C to be finite which may entail for example restricting the
number of nestings of belief operators.

Definition 3. The models of L∆ are structures of the formM =
〈W,V, R, δ〉 where W is a non-empty set of possible worlds, V :
P −→ 2W assigns subsets of W to propositional variables, R ⊆
W × C is a relation used to interpret B and δ : W −→ W is a
function which is used to describe the next state of the world (after
a delay) and interpret ∆. The satisfaction relation of a formula
being true in a world in a model (M,w ∈ W |= φ) is as follows:

M,w |= p⇐⇒ w ∈ V (p);

M,w |= ¬φ⇐⇒M,w �|= φ;

M,w |= φ ∧ ψ ⇐⇒M,w |= φ andM,w |= ψ;

M,w |= Bφ⇐⇒ R(w,φ);

M,w |= ∆φ⇐⇒M, δ(w) |= φ;

There are two conditions on δ:

Inclusion {φ : R((w), φ)} ⊆ {φ : R(δ(w), φ)}.

ConsequencesFor every ψ ∈ C, if {φ : R(w, φ)} �L ψ, then
R(δ(w), ψ).

If for any formula φ in L , φ �L φ, then the Inclusioncondition
follows from the Consequencescondition. Although Consequences
is a semantic condition on L∆ models, it is formulated in terms
of a syntactic relationship �L which is the derivability relation in
logic L. This is not problematic so long as derivability in L can be
effectively established and as a result the property of being an L∆

model is decidable.
The notions of L∆-valid and satisfiable formulas are standard: a

formula φ is L∆-satisfiable if there exists an L∆-model M and a
world w such that M,w |= φ. A formula φ is L∆-valid (|= φ) if
all worlds in all models satisfy φ.

Consider the following axiom system (which we also refer to as
L∆ in the light of the completeness theorem which follows):

2∆ is in fact the same modality as the ‘next’ operator X of linear
time temporal logic LTL [19].



A1 Classical propositional logic;

A2 ∆φ ∨ ∆¬φ
A3 ¬∆(φ ∧ ¬φ)
A4 ∆(φ→ ψ) → (∆φ→ ∆ψ)

A5 Bφ→ ∆Bφ

MP � φ, φ→ ψ =⇒ � ψ

R1 For all ψ ∈ C,
V

i φi �L ψ =⇒ � Vi Bφi → ∆Bψ

R2 � φ =⇒� ∆φ

We say that φ is derivable in L∆ if there is a sequence of formulas
φ1, . . . , φn, each of which is either an instance of an axiom schema
from L∆ or is obtained from the previous formulas using the infer-
ence rules of L∆, and φn = φ. A formula φ is L∆-consistent if
φ ��L∆⊥.

It is natural to assume that φ �L φ in which case A5 becomes
derivable by R1. Note that A5 states that the agent never gives up
its beliefs (its belief set grows monotonically). This is a strong as-
sumption in itself, and in conjunction with additional belief axioms
may lead to paradoxical results. In particular, if the belief opera-
tor satisfies the axioms of KD45 (5 being negative introspection,
¬Bφ→ B¬Bφ) then also ¬Bφ→ ∆¬Bφ is derivable.3

THEOREM 2. L∆ is complete and sound, namely�L∆ φ ⇐⇒
|=L∆ φ

PROOF. First we give a proof of soundness: �L∆ φ =⇒ |=L∆

φ. All instances of the axiom schemas are obviously valid. A2-A4
state that after a delay the world is still a classical boolean universe.
A5 is valid because of the Inclusioncondition.

Next we need to show that if the premises of the rules are valid,
then the conclusions are. Rule R1 expresses the main point of L∆:
if an agent believes in

V
i φi and

V
i φi implies ψ in the agent’s in-

ternal logic L, then after a delay the agent believes ψ. This follows
from the condition on δ. R2 states that after a delay all tautologies
are still true.

Next we prove completeness: |=L∆ φ =⇒ �L∆ φ. We show
that for every φ if ��L∆¬φ then φ is satisfiable, that is �|=L∆¬φ.

Assume that φ is an L∆-consistent formula. In a standard way,
we can show that φ can be extended to a maximally consistent set of
formulas wφ, which is a consistent set closed under L∆ derivability
and containing either ψ or ¬ψ for each ψ ∈ Form. We construct
a canonical model Mc satisfying φ as follows:

W c is the set of all maximally consistent sets;

w ∈ V c(p) ⇐⇒ p ∈ w;

Rc(w,ψ) ⇐⇒ Bψ ∈ w;

δc(w) = {ψ|∆ψ ∈ w}. In other words, ∀ψ ∈ Form(∆ψ ∈
w⇐⇒ ψ ∈ δ(w)).

In order to complete the proof, we need to show:

Truth Lemma:for everyψ ∈ Form and everyw ∈ W c,Mc, w |=
ψ ⇐⇒ ψ ∈ w.

Correctness ofδc: for every w ∈ W c, δc(w) is unique and is a
maximally consistent set.

3We are grateful to one of the anonymous referees for pointing this
out.

Inclusion For every ψ ∈ Form, ifRc((w), φ) thenRc(δc(w), φ).

Consequences:For every ψ ∈ Form, if {φ : Rc(w, φ)} |=L ψ,
then Rc(δ(w), φ).

From the Truth Lemma, it follows that φ is true in wφ, hence φ is
satisfiable.

The proofs of these statements are given below.

Truth lemma.The proof is standard and goes by induction on sub-
formulas of ψ.

Correctness ofδc. Consistency of δc(w) follows from A3. Max-
imality follows from A2, A4 and R2. Uniqueness follows
from the fact that each w′ ∈W c is unique.

Inclusion SupposeRc((w), φ), thenBφ ∈ w. Hence by A5 ∆Bφ ∈
w and by the definition of δc, Bφ ∈ δc(w). This implies
Rc(δc(w), φ).

ConsequencesSuppose ψ ∈ C and {φ : Rc(w, φ)} �L ψ. There-
fore in L there exist φ1, . . . , φn such that

V
i φi |=L ψ. By

assumption Bφi ∈ w. By R2, ∆Bψ ∈ w. By definition of
δc, Bψ ∈ δc(w). Hence Rc(δc(w), ψ).

The logic L∆ is decidable and has the bounded model property.
Before proving this, we need a simple lemma. Below, Subf(φ)
denotes the set of all subformulas of φ, andModSubf(φ) = {ψ ∈
Subf(φ) : Bψ ∈ Subf(φ)} are modal subformulas of φ.

LEMMA 1. For everyφ ∈ Form, and every twoL∆ models
M1 = 〈W1, V1, R1, δ

1〉 andM2 = 〈W2, V2, R2, δ
2〉, if W1 =

W2, δ1 = δ2, V1 andV2 agree onp ∈ P ∩ Subf(φ) andR1 and
R2 agree onψ ∈ModSubf(φ), then for everyw,

M1, w |= φ⇐⇒M2, w |= φ

PROOF. The proof is just a simple induction on subformulas of
φ.

Let us call the number of nestings of ∆ operator in φ∆-depth of
φ, d(φ). More precisely,

d(p) = 0 for p ∈ Prop;

d(¬ψ) = d(ψ);

d(Bψ) = d(ψ);

d(ψ1 ∧ ψ2) = max(d(ψ1), d(ψ2));

d(∆ψ) = d(ψ) + 1.

Clearly d(φ) ≤ |φ| where |φ| is the size (number of subformulas)
of φ. So the result below is better than usual results for modal
logics obtained by filtrations which produce models of size less or
equal to 2|φ|.

THEOREM 3. L∆ has the bounded model property, that is, if a
formulaφ is satisfiable then it has a model where the cardinality of
the set of worlds is less than or equal tod(φ) (hence less than or
equal to|φ|).



PROOF. We can show that if a formula φ of ∆-depth d(φ) = k
is satisfied in a world w of a modelM then it is satisfied in a model
M ′ where the set of worlds contains only w and the worlds reach-
able fromw in k δ-steps, i.e.,W ′ = {w, δ(w), δ(δ(w)), . . . , δk(w)}.
Obviously W ′ is of size at most d(φ) even if W is infinite (|W ′|
could be less than k if for some m < k, δm(w) = δm+1(w)).

The proof that M,w |= φ ⇐⇒ M ′, w |= φ is standard (see for
example [27], Lemma 2.8) and is omitted here.

THEOREM 4. The satisfiability problem forL∆ is decidable.

PROOF. Suppose we would like to check whether a formula φ
is satisfiable in L∆. By the previous theorem, it suffices to check
whether φ is satisfiable in any L∆ model of size less or equal to |φ|.
The set of models of size less or equal to |φ| is strictly speaking in-
finite since R is defined on the set of all formulas which is infinite,
so there are infinitely many models of a fixed finite size which dif-
fer in R. However, by lemma 1 the only part of R in every model
which really matters for checking whether φ is satisfied or not is
the part dealing with all subformulas of φ of the form Bψ. There
are only finitely many different relations R with respect to the set
ModSubf(φ), so we need to check only finitely many cases. Be-
ing an L∆ model is a decidable property; in particular checking
whether the Consequencescondition holds is decidable given that
L is decidable.

An important property for an epistemic logic is also the complex-
ity of model checking: is there an efficient procedure to establish
whether a certain formula holds in a given model. The following
theorem shows that L∆ is extremely efficient in this respect:

THEOREM 5. Given a formulaφ and a pairM,w (a model and
a world), there is is an algorithm which checks whetherM,w |=L∆

φ which is in O(|φ|).

PROOF. Assume that d(φ) = k; recall that |φ| ≥ k. Each
subformula of φ is at some depth i where 0 ≤ i ≤ k and should be
evaluated relative to δi(w). We start at the subformulas at depth k
and replace propositional variables which are true in δk(w) by �,
the ones which are false by ⊥, formulas of the form Bψ by � if
R(δk(w), ψ) and by ⊥ otherwise. Evaluate the resulting formula
using propositional logic and replace all subformulas at depth k by
� or ⊥. Remove the innermost ∆ operator. Now we have a new
formula of depth k − 1. repeat until there are no occurences of ∆
and evaluate the resulting formula. The process is obviously linear
in the length of φ.

4. A LOGIC FOR A MORE REALISTIC REA-
SONER

In L∆, the agent is a perfect reasoner in L: after a fixed delay ∆,
it derives all the L-consequences of its beliefs. Here we introduce
a slightly more realistic logic which describes an agent deriving L-
consequences one at a time, although it is still guaranteed to derive
each consequence after some finite sequence of delays. We call this
logic L∗

∆. The language of L∗
∆ is expanded by an extra modality

∆∗ which stands for a finite (possibly empty) sequence of delays.
It is interpreted as a reflexive transitive closure of the delay relation
{(w, v) : v = δ(w)}. The rest of the language is the same as the
language of L∆; if φ is a formula, then ∆∗φ is also a formula.

Definition 4. The models of L∗
∆ are the same as the models of

L∆, with an additional clause defining the truth conditions of the
∆∗ operator:

M,w |= ∆∗φ⇐⇒M, δ(δ(....δ(w)..) |= φ, that is, after finitely
many (possibly 0) applications of δ we reach a state where φ
is true.

The condition on δ called Consequenceswhich held in L∆ models
does not hold for L∗

∆ models. Instead we have

Finiteness{φ : R((w), φ)} is always finite.

Inclusion {φ : R((w), φ)} ⊆ {φ : R(δ(w), φ)}.

Uniqueness{φ : R((w), φ)} and {φ : R(δ(w), φ)} differ in at
most one formula.

Eventually-ConsequencesIf ψ ∈ C and {φ : R((w), φ)} �L ψ
then there exists an n ≥ 0 such thatψ ∈ {φ : R(δn(w), φ)}.

Note that ∆∗φ means (∆nφ) for some non-negative n, so it
is essentially an existential modality. Its dual [∆∗] which means
∀n ≥ 0 (∆nφ) can be defined as ¬∆∗¬φ. To give an axiomati-
sation, it is helpful to think of ∆ and ∆∗ as PDL (Propositional
Dynamic Logic, see [20]) modalities 〈∆〉 and 〈∆∗〉, with the addi-
tional property that 〈∆〉 is the same as [∆] because it is interpreted
by a function (δ) rather than a relation.

THEOREM 6. The following axiom system is weakly sound and
complete forL∗

∆:

A1 Classical propositional logic;

A2 ∆φ ∨ ∆¬φ
A3 ¬∆(φ ∧ ¬φ)
A4a ∆(φ→ ψ) → (∆φ→ ∆ψ)

A4b [∆∗](φ→ ψ) → ([∆∗]φ→ [∆∗]ψ)

A5’ Bφ→ [∆∗]Bφ

A6 ∆Bφ ∧ ∆Bψ → Bφ ∨ Bψ (φ �= ψ)

A7 ∆∗φ↔ φ ∨ ∆∆∗φ

A8 [∆∗](φ→ ∆φ) → (φ→ [∆∗]φ)

MP � φ, φ→ ψ =⇒� ψ

R1’ For all ψ ∈ C,
V

i φi �L ψ =⇒� Vi Bφi → ∆∗Bψ

R2’ � φ =⇒ � [∆∗]φ

PROOF. The proof of soundness is straightforward and is omit-
ted here. Observe that A5’ replaces A5 of L∆ and R1’, R2’ replace
R1, R2 which become derivable since [∆∗]φ → ∆φ is derivable.
Axiom A6 corresponds to the Uniquenesscondition. The axioms
A7 and A8 axiomatise the transitive closure relation, see [24, 13].

The completeness proof is based on the completeness proof for
PDL given in [3] which in turn is based on [26]. We are going to
show that any L∗

∆-consistent formula φ has a model.
First we define a closureof a set of formulas Σ, Cl(Σ) as the

smallest set containing Σ and closed under subformulas and the
following conditions:

if ∆∗φ ∈ Cl(Σ) then ∆∆∗φ ∈ Cl(Σ)

if φ ∈ Cl(Σ) then ∼ φ ∈ Cl(Σ) where ∼ φ is ψ if φ = ¬ψ and
¬φ otherwise.

Note that Cl(Σ) is finite if Σ is finite.



Then we define a set of atoms over Σ, At(Σ), as the set of all
maximally consistent subsets of Cl(Σ). It can be shown that if φ is
consistent then there is an atom A ∈ At(Cl({φ} ∪BC)) such that
φ ∈ A, where BC is the set of all possible consequences prefixed
by a belief operator. Finally we build a model M = 〈W,V,R, δ〉
where

W = At(Cl({φ} ∪BC));

For every p ∈ P and A ∈ At(Cl({φ} ∪ BC)), A ∈ V (p) iff
p ∈ A;

For every φ and A ∈ At(Cl({φ} ∪BC)), R(A,φ) iff Bφ ∈ A;

For every A,B ∈ At(Cl({φ} ∪ BC)), B = δ(A) if Â ∧ ∆B̂ is
consistent, where Â =

V
φ∈A φ.

Then we need to show that δ so defined is indeed a function (if
Â ∧ ∆B̂ and Â ∧ ∆Ĉ are consistent, then B = C). This is easy
since in L∗

∆ (and L∆) ∆φ ∧ ∆¬φ is inconsistent.
We also need to show that other conditions on R and δ hold and

that the Truth lemmaholds. The only really difficult part of the
proof of the Truth lemmais showing that

∆∗φ ∈ A iff there exists an atom B such that φ ∈ B and there is
a sequence of atoms C0,. . . ,Cn such that C0 = A, Cn = B
and either n = 0 or Ci+1 = δ(Ci).

The proof of this is identical to the proof in [3] for arbitrary PDL
modalities 〈π∗〉.

Of the remaining conditions, Finitenessfollows from construc-
tion (the atoms are finite hence the number of beliefs associated
with each atom by construction of R is finite as well). Uniqueness
follows easily from A6 and the definition of δ. Inclusion follows
from A5’ and the definition of δ. Eventually-Consequencesis the
only slightly non-trivial property. Assume that {φ : R(A,φ)} �L

ψ. We want to show that there is an atom B reachable by a set of
δ-steps such thatR(B,ψ). In the completeness proof for L∆ it suf-
ficed to show that there is a δ-reachable possible world consistent
with Bψ to conclude that it contains Bψ. However, in our model
the atoms are finite and do not contain all formulas they are consis-
tent with. However we constructed the model using the atoms not
just over Cl({φ}), but over Cl({φ} ∪ BC), so Bψ is guaranteed
to belong to an atom it is consistent with. We show that there is a
δ-path to such an atom from A using R1’.

THEOREM 7. Satisfiability inL∗
∆ is decidable.

PROOF. We have shown in the previous theorem that for every
consistent formula φ we can build a finite model the size of which
depends on φ and C.

THEOREM 8. Given a formulaφ and a model, state pairM,w
there is an O(|M |×|φ|) algorithm for checking whetherM,w |=L∗

∆
φ.

PROOF. Since L∗
∆ is a variant of PDL, this follows from the

result on complexity for model checking for PDL ([7]).

There are infinitely many logics between L∗
∆ and L∆ depending

on how many or which beliefs are added at each δ step. Intuitively,
L∗

∆ corresponds to the most low-level view of the agent (although
we don’t say in which order the formulas are derived, in principle
we can specify this). If we prefer to think of the agent on a higher
level of abstraction we can specify, for example, in which order

inference rules are going to be applied and, at each timestep, add
all the formulas derivable by one application of some particular
rule. Alternatively, we can specify (in L∗

∆) an upper bound n on
the number of delays after which each consequence will be derived:

^

i

φi �L ψ =⇒ �
^

i

Bφi → ∆nBψ

Given the above, we have an upper bound on the number of delays
to omniscience. We can use this to define a notion of an effectively
omniscientagent. If we assume that the agent must derive all con-
sequences of its beliefs to be sure of choosing the correct action to
perform, then the agent is effectively omniscient if the number of
delays required for omniscience is less than the rate at which the
environment changes. If the agent requires more applications of
∆, then either it must abandon those inferences it has managed to
draw and start over from its new beliefs (conservative strategy) or
risk that some of its derived beliefs are based on out of date infor-
mation (optimistic strategy).

The modularity of L∗
∆ (the fact that we can substitute any decid-

able logic for L) means that we can use different logics to model
different phases of the agent’s processing. Many agent designs or-
ganise processing into layers or phases, for example, layering of
behaviours in a subsumption architecture or the grouping of rules
into sets concerned with perceptual processing, planning and so on
in a rule-based architecture. We can model this organisation as a
series of logics, L1, . . . , Lk, to allow finer-grained ascription of
beliefs to the agent. For each logic Li, we can impose an upper
bound on the number of delays required to derive all consequences
in this phase. Assuming the processing of the Li is sequential, we
can simply sum the delays for each phase to give the overall upper
bound on deriving all consequences.

5. CONCLUSIONS
In this paper, we have investigated ascribing beliefs to an agent

based on the values of the variables constituting the agent’s internal
state. We looked at the consequences of assuming that the agent not
just has the given beliefs but is also logically omniscient in an epis-
temic logic E. We have shown that although this assumption may
result in counterintuitive consequences (such as the agent believing
all tautologies etc.) in a certain precise sense this assumption may
be harmless: namely, when translated back into the agent’s ‘internal
language’ (involving only the values of the agent’s state variables)
the extra derived beliefs don’t amount to anything more than what
is already in the agent’s state. We characterise the kinds of agents
where this is the case (the logical omniscience assumption is harm-
less). We also showed that if the agent is able to update its internal
state (e.g., by revising its beliefs), then the logical omniscience as-
sumption may not be harmless as we ascribe to the agent beliefs
which it may not have derived. To remedy this, we proposed a fam-
ily of logics which explicitly model computational delay. The logic
L∆ describes an agent which is a perfect reasoner in an arbitrary
logic L (for example, S4, or classical propositional logic) which
explicitly models the computational delay in reasoning about the
agent’s beliefs. For any decidable logic L, L∆ (parameterised by
L) has a complete and sound axiomatisation and is decidable. The
logic L∗

∆ models a more realistic agent which derives at most one
consequence at each computational step—each consequence from
a specified finite set C is guaranteed to be derivable after a finite
sequence of delays. L∗

∆ also has a complete and sound axiomatisa-
tion and is decidable.

The approach we have presented can be used to model the agent
at different levels of abstraction. Propositions can be supervenient
on complex patterns of state variables and the rules used to model



the belief update function can be at any level of abstraction. For
example, the proposition “colliding with obstacle”, pb, could be
true if any of the agent’s bump switches are closed (represented by
one of the variables xi, . . . , xk having the value 1, say). In future
work, we hope to extend our approach to explicitly allow modelling
at multiple levels of abstraction, from fine grained operations on
the variables comprising the agent’s state to more coarse grained
models based on intentional notions such as beliefs, desires and
intentions, with each level of abstraction grounded in the one below
and ultimately in the agent’s state.
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