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Abstract. Logical omniscience is a well known problem which makes
traditional modal logics of knowledge, belief and intentions somewhat
unrealistic from the point of view of modelling the behaviour of a re-
source bounded agent. We propose two logics which take into account
‘deliberation time’ but use a more or less standard possible worlds se-
mantics with classical possible worlds.

1 Introduction

There has been considerable recent interest in agent-based systems, systems
based on autonomous software and/or hardware components which perceive
their environment and act in that environment in pursuit of their goals. The
paradigmatic example of an agent is an autonomous robot situated in a physical
environment, but there are other kinds of agents, including software agents whose
environment is the Internet and synthetic characters in games and computer en-
tertainments. Agents integrate a range of (often relatively shallow) competences,
e.g., goals and reactive behaviour, emotional state and its effect on behaviour,
natural language, memory and inference. As such they are central to the study
of many problems in Artificial Intelligence, including modelling human mental
capabilities (e.g., emotions) and performing complex tasks (e.g., those combining
perception, planning, and opportunistic plan execution).

An agent can be viewed as a mapping from percepts to actions (see Fig. 1).
The agent constantly monitors its environment and selects actions which allow
it to achieve its goals given the current state of the environment. For example,
a robot with the goal of delivering a package to an office at the end of the hall
may modify its path to avoid someone who has just stepped out of an office half
way down the hall.

An agent consists of three main components (e.g., [9]):

– the agent program implements a mapping from percepts to actions (this is
sometimes called the action selection function or action composition);

– the agent state includes all the internal representations on which the agent
program operates (this may include representations of the agent’s environ-
ment and goals, the plans it has for achieving those goals, which parts of the
plan have been executed and so on); and



– the agent architecture, a (possibly virtual) machine that makes the percepts
from the agent’s sensors available to the agent program, runs the agent pro-
gram, updates the agent state, and executes the primitive action(s) chosen
by the agent program.
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Fig. 1. An agent

Our main concern is with the agent architecture. The architecture defines the
atomic operations of the agent program, and implicitly defines the components
of the agent. Building a successful agent system consists largely in finding the
correct architecture. There is no one correct architecture for all problems; the
correct architecture depends on the task and environment.

A major focus of research in intelligent agents has therefore been to un-
derstand the implications of different agent architectures. One way to do this is
empirically, by building a range of agent systems with differing architectures and
conducting controlled experiments (often using simulations) to assess the relative
advantages and disadvantages of each architecture. Such experiments allow the
agent designer to learn more about the behaviour of a proposed system, and the
agent researcher to probe the relationships between agent architectures, environ-
ments and behaviour [10]. However, conducting experiments, even in simulation,
is time consuming and costly. Existing work on agent simulation is largely ad-
hoc, with little re-use of simulation components and scenarios, and often fails to
distinguish clearly between models of the agent and the test environment, and
between these models and the simulations themselves. Agent and environment
models and the simulation mechanisms are typically developed and implemented
from scratch for each project or application. This limits the re-use of test sce-
narios, makes it difficult to reproduce previous experimental results and makes
it difficult to compare architectures and implementations.

Another approach is to prove properties of the agent architecture. This means
that we formalise a particular architecture in some logic and prove theorems
about agent behaviour resulting from the architecture, for example: an agent
with architecture X will solve a given problem faster than an agent with archi-
tecture Y; an agent with architecture Z will not be able to solve a given problem,



or will not be able to solve it before the environment changes and the solution
becomes irrelevant.

However most logical approaches to reasoning about agents are based on ide-
alisations which make reasoning about agent architectures problematic. Chief
among those is logical omniscience. The concept of logical omniscience was in-
troduced by Hintikka in [4] and is usually defined as the agent knowing all logical
tautologies and all the consequences of its knowledge. For example, the influen-
tial Belief, Desire, Intention (BDI) framework of Georgeff and Rao [8] models
agents as logically omniscient. However, logical omniscience is problematic when
attempting to build realistic models of agent behaviour, as closure under logical
consequence implies that deliberation takes no time. If processes within the agent
such as belief revision, planning and problem solving are modelled as derivations
in a logical language, such derivations require no investment of computational
resources by the agent. To return to the example of the package delivery robot
above, when the robot becomes aware of an obstacle in the hall (e.g., from sonar
data) it instantaneously revises its beliefs to update its representation of the
world, making decisions about whether the obstacle is real or the result of noisy
sensor data, and instantaneously decides which steps in its current plan need to
be revised and derives a new plan to avoid the obstacle.

There is a significant body of work which has addressed the problem of log-
ical omniscience from a number of different perspectives including: limiting the
agent’s deductive capabilities by introducing non-classical worlds in the possi-
ble worlds semantics [7, 3]; distinguishing between beliefs which can be ascribed
to the agent and the agent’s actual beliefs [6]; and explicitly incorporating the
notion of resources [1, 13].

In this paper, we propose an alternative approach which incorporates a notion
of ‘delayed belief’. This has some similarities to the notion of resources in [1, 13]
but our approach is developed within the context of standard possible worlds
semantics. We believe that this makes it more transparent and computationally
tractable. In section 2 we develop the notion of delayed belief and define two
logics which formalise this notion. We prove that both logics have complete and
sound axiomatisations and are decidable. In section 3 we briefly survey related
work and point out similarities and differences with our approach. In section 4
we outline some open problems and sketch a program of further work.

2 Delayed Belief

In this section we consider two logics, L≡∆ and L→∆ . Both logics contain an opera-
tor 2 which can be interpreted as standing for belief or knowledge1. These logics
are our first attempt to incorporate the notion of computational cost (time) in
reasoning about the agent’s beliefs or knowledge. In L≡∆, if at the current moment
an agent believes φ, then after a fixed delay ∆ it will believe in all propositions
1 Or any other propositional attitude where closure under logical equivalence or conse-

quence could be expected from an ideally rational and computationally unbounded
agent, but not from a realistic agent.



equivalent to φ. In L→∆ , after the same delay it will believe in all consequences of
its beliefs at the previous step. The intuition underlying this notion of delayed
belief is that an agent is able to draw inferences but needs time to derive conse-
quences of its beliefs, so it does not believe the consequences instantaneously.

In both logics, none of the principles usually identified with logical omni-
science (see for example [12]) is valid:

|= 2φ ∧ 2(φ→ ψ) → 2ψ (the agent’s beliefs are closed under modus ponens)
|= φ =⇒ |= 2φ (the agent believes all tautologies)
|= φ → ψ =⇒ |= 2φ → 2ψ (the agent believes all logical consequences of its

beliefs)
|= φ ≡ ψ =⇒ |= 2φ ≡ 2ψ (if φ and ψ are logically equivalent, the agent

believes φ if and only if it believes ψ)
|= 2φ ∧ 2ψ → 2(φ ∧ ψ) (the agent’s beliefs are closed under conjunctions)
|= 2φ→ 2(φ ∨ ψ) (the agents beliefs are closed under weakening)
|= ¬(2φ ∧ 2¬φ) (the agent’s beliefs are consistent).

The logics L≡∆ and L→∆ contain an operator ∆ which stands for ‘After a
delay’. We make several simplifying assumptions concerning ∆. We assume that
the world (atomic facts) does not change while the agent is deriving consequences
of its beliefs (during the delay). We also assume that although new beliefs can
be added, no beliefs can be removed from the agent’s belief set. These are very
strong assumptions. We discuss possible ways of overcoming them in Section 4.

2.1 L�
�

The language of both logics L≡∆ and L→∆ consists of a set Prop of propositional
variables p, q, r, p1, . . ., usual boolean connectives ¬,∧,→, . . . and two unary
modalities: 2 which could be informally read as ‘Believes’ and ∆, standing for
‘After a delay’. A well formed formula is defined as usual: p|¬φ|φ ∧ ψ|2φ|∆φ
however we require that 2φ is a well formed formula only if φ does not contain
2 and ∆. We denote the set of all well formed formulas as Form. We denote
the set of formulas which do not contain 2 and ∆ as NonModForm.

Definition 1. The models of L≡∆ are structures of the form M = 〈W,V,R, δ〉
where W is a non-empty set of possible worlds, V : Prop −→ 2W assigns subsets
of W to propositional variables, R ⊆ W ×NonModForm is a relation used to
interpret 2 and δ : W −→ W is a function (a sort of successor function) which
is used to describe the next state of the world (after a delay) and interpret ∆.
The satisfaction relation of a formula being true in a world in a model (M,w ∈
W |= φ) is as follows:

M,w |= p⇐⇒ w ∈ V (p);
M,w |= ¬φ⇐⇒M,w 6|= φ;
M,w |= φ ∧ ψ ⇐⇒M,w |= φ and M,w |= ψ;
M,w |= 2φ⇐⇒ R(w, φ);
M,w |= ∆φ⇐⇒M, δ(w) |= φ;



There are two conditions on δ:

Frozen world For every p ∈ Prop, w ∈ V (p) ⇐⇒ δ(w) ∈ V (p)
Equivalences For every φ ∈ NonModForm, if R(w, φ) or there exists a for-

mula ψ such that R(w,ψ) and ` φ ≡ ψ in classical propositional logic, then
R(δ(w), φ).

The notions of L≡∆-valid and satisfiable formulas are standard: a formula φ is
L≡∆-satisfiable if there exists an L≡∆-model M and a world w such that M,w |= φ.
A formula φ is L≡∆-valid (|= φ) if all worlds in all models satisfy φ.

Consider the following axiom system (we will refer to it as L≡∆, too, in the
light of the completeness theorem which follows):

Cl Classical propositional logic;
A1 φ ≡ ∆φ for all φ ∈ NonModForm;
A2 ∆φ ∨∆¬φ
A3 ¬∆(φ ∧ ¬φ)
A4 ∆(φ→ ψ) → (∆φ→ ∆ψ)
MP If φ and φ→ ψ derive ψ
R1 If φ ≡ ψ derive 2φ→ ∆2ψ
R2 If φ derive ∆φ

We say that φ is derivable in L≡∆ if there is a sequence of formulas φ1, . . . , φn,
each of which is either an instance of an axiom schema from L≡∆ or is obtained
from the previous formulas using the inference rules of L≡∆, and φn = φ.

Theorem 1. L≡∆ is complete and sound, namely `L≡
∆
φ⇐⇒ |=L≡

∆
φ

Proof. First we give a proof of soundness: `L≡
∆
φ =⇒ |=L≡

∆
φ. All instances of

the axiom schemas are obviously valid. A1 expresses the fact that the world is
‘frozen’ as far as non-modal statements are concerned. A2-A4 state that after
a delay the world is still a classical boolean universe.

Note that ¬(∆φ ∧∆¬φ) follows from A3, A4, 2φ→ ∆2φ follows from R1
and ∆¬2φ → ¬2φ follows from the previous formulas.

Next we need to show that if the premises of the rules are valid, then the
conclusions are. Rule R1 expresses the main point of L≡∆: if an agent believes φ
and φ is equivalent to ψ, then after a delay the agent believes ψ. This follows
from the second condition on δ. R2 states that after a delay all tautologies are
still valid.

Next we prove completeness: |=L≡
∆
φ =⇒ `L≡

∆
φ. We show that for every φ if

6`L≡
∆
¬φ then φ is satisfiable, that is 6|=L≡

∆
¬φ.

Assume that φ is an L≡∆-consistent formula. In a standard way, we can show
that φ can be extended to a maximally consistent set of formulas wφ, which is
a consistent set closed under L≡∆ derivability and containing either ψ or ¬ψ for
each ψ ∈ Form. We construct a model M canonical (M c for short) satisfying φ
as follows:



W c is the set of all maximally consistent sets; we also require that each world
is unique, in other words there are no copies of the same set;

w ∈ V c(p) ⇐⇒ p ∈ w;
Rc(w,ψ) ⇐⇒ 2ψ ∈ w;
δc(w) = {ψ|∆ψ ∈ w}. In other words, ∀ψ ∈ Form(∆ψ ∈ w ⇐⇒ ψ ∈ δ(w)).

In order to complete the proof, we need to show:

Truth Lemma: for every ψ ∈ Form and every w ∈ W c, M c, w |= ψ ⇐⇒ ψ ∈ w.
Correctness of δc: for every w ∈ W c, δc(w) is unique and is a maximally con-

sistent set.
Frozen world: for every p ∈ Prop, w ∈ V c(p) ⇐⇒ δc(w) ∈ V c(p).
Equivalences: For every φ ∈ NonModForm, if Rc(w, φ) or there exists a formula

ψ such that Rc(w,ψ) and ` φ ≡ ψ in classical propositional logic, then
Rc(δ(w), φ).

From the Truth Lemma, it follows that φ is true in wφ, hence φ is satisfiable.
The proofs of these statements are given below.

Truth lemma. The proof goes by induction on subformulas of ψ. It is very easy
for ψ = p|¬ψ1|ψ1 ∧ ψ2.
Suppose ψ = ∆ψ1. Then M c, w |= ∆ψ1 ⇐⇒ M c, δc(w) |= ψ1 ⇐⇒ ψ1 ∈
δc(w) (induction hypothesis) ⇐⇒ ∆ψ1 ∈ w (definition of δc).
Suppose ψ = 2ψ1. Then M c, w |= 2ψ1 ⇐⇒ Rc(w,ψ1) ⇐⇒ 2ψ1 ∈ w
(definition of Rc).

Correctness of δc. Consistency of δc(w) follows from A3. Maximality follows
from A2, A4 and R2. Uniqueness follows from the fact that each w′ ∈W c

is unique.
Frozen world w ∈ V c(p) ⇐⇒ p ∈ w ⇐⇒ ∆p ∈ w (A1) ⇐⇒ p ∈ δc(w) ⇐⇒

δc(w) ∈ V c(p).
Equivalences Suppose Rc(w, φ). Then 2φ ∈ w. By R2, ∆2φ ∈ w. By definition

of δc, 2φ ∈ δc(w). Hence Rc(δc(w), φ).
Suppose there exists a formula ψ such that Rc(w,ψ) and φ ≡ ψ is provable
in classical propositional logic and hence in L≡∆. Then 2ψ ∈ w and ∆2φ ∈ w
by R2. This implies 2φ ∈ δc(w) so Rc(δc(w), φ).

2.2 L!
�

It is easy to modify L≡∆ so that an agent, instead of being able to derive all
formulas equivalent to its beliefs, after a delay can derive all consequences of its
beliefs.

Definition 2. A model for L→∆ is defined in the same way as a model for L≡∆,
but replacing the Equivalences condition with the following stronger condition:

Consequences For every φ ∈ NonModForm, if R(w, φ) or there exists a for-
mula ψ such that R(w,ψ) and ` ψ → φin classical propositional logic, then
R(δ(w), φ).



Theorem 2. The following axiom system is sound and complete for L→∆ : the
axioms and rules for L≡∆ plus

R3 If φ→ ψ derive 2φ→ ∆2ψ

(Note that R1 becomes derivable).

The proof is very similar to the proof of completeness and soundness of L≡
∆.

Both logics L≡∆ and L→∆ are decidable and have the bounded model property.
Before proving this, we need a simple lemma. Below, Subf(φ) denotes the set
of all subformulas of φ, and ModSubf(φ) = {ψ ∈ Subf(φ) : 2ψ ∈ Subf(φ)} are
modal subformulas of φ.

Lemma 1. For every φ ∈ Form, and every two L≡∆ (L→∆ ) models
M1 = 〈W1, V1, R1, δ1〉 and M2 = 〈W2, V2, R2, δ2〉, if W1 = W2, δ1 = δ2, V1 and
V2 agree on p ∈ Prop ∩ Subf(φ) and R1 and R2 agree on ψ ∈ ModSubf(φ),
then for every w,

M1, w |= φ⇐⇒M1, w |= φ

Proof. The proof is just a simple induction on subformulas of φ.

Let us call the number of nestings of ∆ operator in φ ∆-depth of φ, d(φ).
More precisely,

d(p) = 0 for p ∈ Prop;
d(¬ψ) = d(ψ);
d(2ψ) = d(ψ);
d(ψ1 ∧ ψ2) = max(d(ψ1), d(ψ2));
d(∆ψ) = d(ψ) + 1.

Clearly d(φ) ≤ |φ| where |φ| is the size (number of subformulas) of φ. So the
result below is better than usual results for modal logics obtained by filtrations
which produce models of size less or equal to 2|φ|.

Theorem 3. L≡∆ and L→∆ have the bounded model property, that is, if a formula
φ is satisfiable then it has a model where the set of worlds is less or equal to d(φ)
(hence less or equal to |φ|).
Proof. The proof is similar for both logics. We can show that if a formula φ of
∆-depth d(φ) = k is satisfied in a world w of a model M then it is satisfied in
a model M ′ where the set of worlds contains only w and the worlds reachable
from w in k δ-steps, i.e. W ′ = {w, δ(w), δ(δ(w)), . . . , δk(w)}. Obviously W ′ is
of size at most d(φ) even if W is infinite (|W ′| could be less than k if for some
m < k, δm(w) = δm+1(w)).

The proof that M,w |= φ ⇐⇒ M ′, w |= φ is standard (see for example [11],
Lemma 2.8) and is omitted here.

Theorem 4. The satisfiability problem for L≡∆ and L→∆ is decidable.



Proof. Suppose we would like to check whether a formula φ is satisfiable in L≡∆
(L→∆ ). By the previous theorem, it suffices to check whether φ is satisfiable in
any L≡∆ (L→∆ ) model of size less or equal to |φ|. The set of models of size less
or equal to |φ| is strictly speaking infinite since R is defined on the set of all
formulas which is infinite, so there are infinitely many models of a fixed finite
size which differ in R. However, by the previous lemma the only part of R in
every model which really matters for checking whether φ is satisfied or not is the
part dealing with all subformulas of φ of the form 2ψ. There are only finitely
many different relations R with respect to the set ModSubf(φ), so we need to
check only finitely many cases. Being an L≡∆ (L→∆ ) model is a decidable property
since the equivalence relation (consequence relation) on classical propositional
formulas is decidable.

3 Related Work

In this section, we briefly survey previous approaches to the problem of logical
omniscience and point out similarities and differences with our approach.

Hintikka [4, 5] and Rantala [7] saw the problem of logical omniscience mostly
as a result of unrealistic principles in a formal model of knowledge. The solu-
tion they favoured was to make the principles invalid by changing the possible
worlds semantics so that logically equivalent formulas do not necessarily hold in
the same sets of possible worlds. This was achieved by introduction of ‘impossi-
ble worlds’ ([7]) where classical logic does not hold. Similar in spirit is the work
of Fagin et al. [3] where possible worlds model a flavour of relevance logic. There
again classical logical omniscience does not hold, although the agents are perfect
reasoners in a weaker logic. Levesque [6] makes an important distinction between
the beliefs which the agent actually has (explicit beliefs) and beliefs which can
be attributed to it. The explicit beliefs do not conform to the principle of logical
omniscience. Levesque’s approach involves using incomplete worlds (situations).
A similar but simpler and more intuitive semantics for explicit beliefs was pro-
posed by Fagin et al. [2]. Elgot-Drapkin & Perlis [1] and Weyhrauch et al. [13]
take a different approach which is concerned more with modelling the bounded
resources which prevent the agent from deriving all consequences from its beliefs
rather than modelling its irrationality or lack of awareness.

Our motivation is closer to the bounded-resources approach of Elgot-Drapkin
and Perlis and Weyhrauch et al., in that we would like to model a rational but
resource-bounded agent. However, our solution is in a traditional possible worlds
setting rather than in a complex first-order theory of resources or step-logic.
Unlike many other epistemic logic approaches, we distinguish between beliefs at
the current moment and beliefs after the reasoner had time to consider their
consequences, rather than distinguishing between implicit and explicit beliefs.



4 Discussion and Further Work

The logics L≡∆ and L→∆ are simple and have attractive formal properties. However,
they are far from what we actually would like to achieve. We describe them here
as a proof of concept, which requires further elaboration to achieve a realistic
model of agent behaviour. In this section, we briefly outline some of the ways in
which the approach presented above could be extended.

First of all, we would like to make the connection between delay time and
computational effort involved in deducing a formula more explicit. Although
nestings of the delay operator ∆ can express some of the intuitions (e.g 2φ ∧
∆2(φ → ψ) → ∆∆2ψ), it may be useful to introduce finer structure on what
kind of derivations can be made after a fixed amount of time. For example,
after a single unit of delay we could add all statements derivable from current
beliefs in one application of an inference rule. Another possibility is to add extra
expressive power to the language to allow us to explicitly mention moments of
time as in [1] or available resources (e.g., inference rules) as in [13].

Another serious limitation of L≡∆ and L→∆ is that we assume that the world
does not change while the agent is reasoning and that the agent never has to
revise its beliefs. This could be overcome by explicitly tagging particular beliefs
with moments of time.

For some applications, the agent’s inability to reason about its beliefs is a
limitation. For example, an agent should be able to realise that it does not know
whether φ and attempt to derive it (see [1] for more examples).

The logics we proposed only consider deductive reasoning, not default rea-
soning or planning. However, we believe that our approach can be extended to
other kinds of deliberation.
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