
Unbounded Orchestrations of Transducers for Manufacturing
Natasha Alechina

University of Nottingham
Nottingham, UK

nza@cs.nott.ac.uk

Tomáš Brázdil
Mazaryk University

Brno, Czech Republic
xbrazdil@fi.muni.cz

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Paolo Felli
University of Bozen-Bolzano

Bolzano, Italy
pfelli@unibz.it

Brian Logan
University of Nottingham

Nottingham, UK
bsl@cs.nott.ac.uk

Moshe Y. Vardi
Rice University
Houston, USA

vardi@cs.rice.edu

Abstract

There has recently been increasing interest in using reactive
synthesis techniques to automate the production of manufac-
turing process plans. Previous work has assumed that the set
of manufacturing resources is known and fixed in advance. In
this paper, we consider the more general problem of whether
a controller can be synthesized given sufficient resources. In
the unbounded setting, only the types of available manufac-
turing resources are given, and we want to know whether it
is possible to manufacture a product using only resources of
those type(s), and, if so, how many resources of each type
are needed. We model manufacturing processes and facilities
as transducers (automata with output), and show that the un-
bounded orchestration problem is decidable and the (Pareto)
optimal set of resources necessary to manufacture a prod-
uct is computable for uni-transducers. However, for multi-
transducers, the problem is undecidable.

1 Introduction
There has recently been increasing interest in using reac-
tive synthesis techniques to automate the synthesis of manu-
facturing process plans (de Silva et al. 2016; Felli, Logan,
and Sardina 2016; de Silva et al. 2017; Felli et al. 2017;
De Giacomo et al. 2018). A process plan matches the ab-
stract manufacturing tasks in a process recipe specifying the
steps needed to manufacture a product, against manufac-
turing resources, e.g., computer/numerical-controlled ma-
chines, robots etc., to give an executable process plan that
realizes the process recipe. The process plan specifies the
specific manufacturing resources to be used for each man-
ufacturing and assembly operation, and how materials and
parts move between the various manufacturing resources.
Process planning is traditionally carried out by manufactur-
ing engineers who are experts in the particular processes
used in a specific factory, and is largely a manual process.
However, with the increasing servitization of manufactur-
ing (sometimes called ‘cloud manufacturing’ (Lu, Xu, and
Xu 2014)), where the products to be manufactured are not
known in advance and are often produced in small batches
to tight timescales, the manual production of process plans
is becoming increasingly uneconomic.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous work on the automated synthesis of process
plans has focussed on the ‘on-the-fly’ generation of pro-
cess plan controllers. For example, in (de Silva et al. 2016;
Felli et al. 2017), techniques based on AI behavior composi-
tion (De Giacomo, Patrizi, and Sardiña 2013) are proposed
to determine whether a particular product is realizable (can
be manufactured by a particular set of manufacturing re-
sources), and how the product should be manufactured us-
ing the resources. Their approach takes as inputs a process
recipe and a production topology specifying the available
manufacturing resources and their interconnection via con-
veyor belts, AGVs etc., and outputs a process plan controller
that specifies the tasks to be executed by each manufacturing
resource in the production line. Process recipes and manu-
facturing resources are represented using labelled transition
systems, and they define a special task simulation relation
that captures the notion of realizability. Controller synthe-
sis is a byproduct of computing the simulation relation. In
(De Giacomo et al. 2018) process recipes and resources are
modelled as (multi)transducers (automata with output), and
the problem of whether a given process recipe can be real-
ized by a given set of manufacturing resources is then stated
as an orchestration problem for transducers. They provide an
algorithm for synthesizing a controller that realizes a recipe
based on safety games.

In all of these approaches, the set of manufacturing re-
sources in a manufacturing facility (or available in a man-
ufacturing cloud) is assumed to be known and fixed in ad-
vance. In this paper, we consider the more general problem
of whether a product can be manufactured given sufficient
resources. In this setting, only the types of available manu-
facturing resources are given, and we want to know whether
it is possible to manufacture a product using only resources
of those type(s), and, if so, how many resources of each type
are needed. This question is of interest when considering the
provisioning of manufacturing facilities; for example, how
many additional resources of each type would have to be
purchased or leased in order to manufacture a new product?
We model manufacturing processes and facilities as trans-
ducers (automata with output), and show that the unbounded
orchestration problem is decidable and the (Pareto) optimal
set of resources necessary to manufacture a product is com-
putable for uni-transducers. However, for multi-transducers,
the problem is undecidable.

2 Uni-Transducer Setting
As in (De Giacomo et al. 2018), we begin by modeling
both manufacturing resources and process recipes as uni-
transducers, that is, finite deterministic automata with out-
puts (Mealy machines) (Hopcroft and Ullman 1979). We
consider a simple setting where all machines take a single
input and produce a single output in each state.

Definition 1. A (uni-)transducer T = (Σ,∆, S, s0, f, g) is
a deterministic transition system with inputs and outputs,
where Σ is the input alphabet, ∆ is the output alphabet, S is
the set of states, s0 the initial state, f : S × Σ −→ S is the
transition function (which takes a state and an input symbol
and returns the successor state) and g : S ×Σ −→ ∆ is the
output function (which returns the output of the transition).

A transducer takes an infinite string of symbols from Σ
as an input, and outputs an infinite string of symbols from
∆ as an output. In a manufacturing setting, one can think
of the input and output sequences as manufacturing events.
For example, an input event may consist of a manufacturing
operation and a part to which the operation is to be applied.
Note that we assume that a successor state is defined for any
pair of state and input symbol; this can be achieved by in-
troducing an ‘error state’ to which a transition is made if the
pair of state and symbol does not make sense in a manu-
facturing context. The error state has a self-loop that on any
input symbol, outputs an error symbol.

Example 1 (Uni-transducers). As an example, consider a
simple process recipe T shown in Figure 1 (top) for join-
ing two panels forming part of a product. Each panel is
first positioned, p, the panels are then joined using fasten-
ers, j, and finally the panels are released, r. Formally, the
corresponding transducer is T = (Σ,∆, S, s0, f, g), where:
S = {s0, s1, s2, s3, s4, serr}; Σ = {p, j, r}, where p cor-
responds to positioning a panel, j corresponds to joining
two panels, and r corresponds to releasing a panel; ∆ =
{p′, j′, r′, err}, which correspond to signals that the man-
ufacturing operations p, j, r were performed, and an error,
respectively. The transitions are depicted in Figure 1; for ex-
ample f(s0, p) = s1, and g(s0, p) = p′. All combinations
of states and inputs not depicted in Figure 1 result in a tran-
sition to serr outputting err.

Such a recipe can be realized (manufactured) by an as-
sembly cell containing two types of resource as shown in
Figure 1 (bottom). The first type of resource, T1, can posi-
tion a panel, e.g., T1 may be a robot arm that holds the panel
in the appropriate position for joining. The second type of
resource, T2 can insert fasteners to join the panels. Clearly,
to join two panels, we need two resources of type T1 and one
resource of type T2.

2.1 Unbounded Orchestration
In this section, we formalize the unbounded orchestra-
tion problem. We assume we are given a set of avail-
able transducer types {T1, . . . , Tm}, where each Tj =
(Σ,∆, Sj , s0j , fj , gj) (i.e., all Tj are over the same in-
put and output alphabet) which represent manufacturing re-
sources. We are also given a process recipe T , which is also

s0 s1 s2 s3 s4T

p | p’ p | p’ j | j’ r | r’

r | r’

s01 s11T1

p | p’

r | r’

s02T2 j | j’

Figure 1: Process recipe T and manufacturing resources T1
and T2. The error states serr for each transducer are not
shown

a transducer with the same input and output alphabets as
the Tjs. The unbounded orchestration problem is to com-
bine some number nj of resources of each type Tj to be able
to match the behavior of T .

We first give a formal definition of the behavior of T .
The behavior of T on input w = a0a1 . . . is described by

the following sequence of states and outputs (where T s is
the state and T o the output):

T s(a0) = f(s0, a
0)

T o(a0) = g(s0, a
0)

. . .

T s(a0 . . . ai) = f(T s(a0 . . . ai−1), ai)

T o(a0 . . . ai) = g(T s(a0 . . . ai−1), ai)

The observable output sequence of T on input w is τow,T =

T o(a0), . . . , T o(a0 . . . ai) . . .
Consider P = T1,1×T1,n1

×· · ·×Tm,1×Tm,nm
(i.e., the

transducer corresponding to the whole production facility,
with nj copies of Tj for each transducer type Tj).

A controller for P is a function C : Σ+ −→
{(1, 1), . . . , (m,nm)} that, for each finite input string, picks
a transducer in P to make a transition. The sequence of
(global) states generated by the controller on input w is

τsw,C = (s01,1, . . . , s
0
m,nj

), . . . , (si1,1, . . . , s
i
m,nj

) . . .

where only one of the local states changes in each transition:

si+1
h =

{
sih if C(a0 . . . ai) 6= h
fh(sih, a

i) if C(a0 . . . ai) = h

The output of C on P over the input w is τow,C =

b0, . . . , bi, . . ., where bi = gh(sih, a
i). C realizes T if

τow,T = τow,C for all w.

Definition 2. Given a set of transducer types T1, . . . , Tm
and a production recipe transducer T , the orchestration
problem is the question whether there are numbers of copies
of each transducer type n1, . . . , nm such that there is a con-
troller C for P = T1,1 × · · · × Tm,nm which realizes T .

Example 2 (Orchestration). Consider a sequence of inputs
p, p, j, r, r, . . . The transducer T from Example 1 produces a
sequence of outputs p′, p′, j′, r′, r′, . . . on this input. A con-
troller C for T1,1 × T1,2 × T2,1 (where the number n1 of
copies of T1 is 2, and n2 = 1 is the number of copies of T2)

imitates this behavior by the following mapping:

p 7→ (1, 1)
p, p 7→ (1, 2)
p, p, j 7→ (2, 1)
p, p, j, r 7→ (1, 1)
p, p, j, r, r 7→ (1, 2)

2.2 Orchestrator Synthesis
For the bounded case (when there is exactly one trans-
ducer of each type), the orchestration problem was solved
in (De Giacomo et al. 2018) by using the idea that a con-
troller can be synthesized as a strategy to solve safety games
(Grädel, Thomas, and Wilke 2003; De Giacomo et al. 2010;
Ehlers et al. 2017). They also showed that the bounded or-
chestration problem is EXPTIME-complete.

In this section, we will reduce the unbounded orchestra-
tion problem to a decidable problem on multi-dimensional
energy games.

Let C be a finite set of n counters. A multi-dimensional
energy game is a tuple G = (Q,R) where Q is a finite
set of states and R is a finite set of transitions of the form
(q1, op, q2) where q1, q2 ∈ Q and op ∈ {0,−1, 1}n is an
update vector for the values of the counters (0 in position j
stands for no change to the value of counter cj ,−1 stands for
decrementing cj , and 1 for incrementing cj by 1).Q is parti-
tioned into Q0, which are states of Player 0, and Q1, which
are states of Player 1. A counter evaluation ν : C → Z
is a function from the set of counters to the set of integers.
A configuration γ is a pair (q, ν) where q ∈ Q and ν is a
counter evaluation. Transitions between configurations are
defined as follows: given γ1 = (q1, ν1), γ2 = (q2, ν2) and
t = (q1, op, q2) ∈ R, γ1 −→t γ2 iff ν2 = ν1 + op. A history
is a finite sequence of configurations. A strategy of Player
i ∈ {0, 1} is a function σi that assigns to each history end-
ing in a configuration γ with the state in Qi a transition t
that is possible from γ. Given strategies σ0 and σ1 of Player
0 and Player 1, respectively, together with an initial config-
uration γ1 induce a play, an infinite sequence γ1, γ2, . . . of
configurations such that γk −→t γk+1 where γk = (qk, νk)
for qk ∈ Qi and t = σi(γ1, . . . , γk). Player 0 wins such
a play if νk(c) ≥ 0 for all k ≥ 1 and c ∈ C, i.e. all
counters of all configurations of the play are non-negative.
Player 0 wins the game in γ if it wins every play starting in
γ. The set W (G, 0) is the set of configurations γ in which
player 0 wins. The Pareto frontier is min(W (G, 0)) where
min is with respect to pointwise order of values. Given a
counter evaluation ν, the maximum norm of ν is defined by
maxc∈C ‖ν(c)‖.
Theorem 1. (Jurdzinski, Lazic, and Schmitz 2015)
The Pareto frontier is computable in doubly exponential time
and pseudo-polynomial assuming the number of counters is
fixed. Moreover, the maximum norms of vectors of the Pareto
frontier are bounded by an exponential value in the number
of counters n and polynomial in the number of states and
transitions.

We will now reformulate the orchestration problem as a
multi-dimensional energy game. This together with Theo-

rem 1 implies that the orchestration problem is decidable in
doubly exponential time.

We are given m resource transducer types Ti =
(Σ,∆, Pi, p

i
0, αi, βi) and a target process recipe transducer

T = (Σ,∆, S, s0, f, g). The realizability question for
ΠTni

i = T1,1×T1,n1
×· · ·×Tm,1×· · ·×Tm,nm

can be for-
mulated as a game between Controller (Player 0) and an Ad-
versary (Player 1). The game starts with Adversary choos-
ing an input symbol a ∈ Σ, yielding output g(p, a), and
changing the state of T to f(s, a). Controller must choose a
component Ti,j where i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni}
such that βi(pij , a) = g(p, a), and change the state pij of
Ti,j to αi(p

i
j , a). Controller must be able to keep playing

forever without causing a mismatch of outputs between T
and ΠTni

i . If Controller has a winning strategy, then ΠTni
i

realizes T .
Let us denote a transition of T from state s ∈ S to state

t = f(s, a), for a ∈ Σ with output b = g(s, a), by the tuple
(s, a, b, t). Intuitively these are transitions of the Adversary
(the way Player 1 can choose the next state).

Let the cardinality of the set of states of Ti, |Pi| = ki.
Then ΠTni

i can be described by a Σki-ary nonnegative inte-
ger vector v = (v10 , . . . , v

1
k1−1, . . . , v

m
0 , . . . , v

m
km−1), where

vi0 + . . . + viki−1 = ni. Intuitively, viq denotes that there
are viq copies of Ti in state piq . The initial state of ΠTni

i is,
therefore, the vector (ki,0)i which says that for every Ti
we have ki copies of Ti in state pi0, and zero copies in ev-
ery other state in Pi. Now applying an input symbol a to
a particular configuration of ΠTni

i means choosing a copy
of Ti in some state piq and relacing it by a copy in state
pir = αi(p

i
q, a). The output corresponding to this transi-

tion is b = βi(p
i
q, a). We denote this transition by the tu-

ple (piq, a, b, p
i
r). Thus, the vector v representing a counter

evaluation of ΠTni
i is updated by adding to it the update

vector u = (u10, . . . , u
m
km−1), where uiq = −1, uir = 1, and

all other components of u are 0. Note that adding an update
vector to v does not change the sum of the components of
v. Let U(a,b) be the set of such update vectors for transitions
with input a ∈ Σ and output b ∈ ∆.

As defined above, a controller C : Σ+ −→
{(1, 1) . . . , (m,nm)} chooses a type Ti and a copy T(i,j)
of it in ΠTni

i and applies the current input symbol to that
copy. But all copies that are in the same state behave in the
same way, so we can say that the controller is a function
C : Σ+ −→ {(1, 0), . . . , (m, km−1)}, which chooses i and
a state in Pi. Consider now a transition (s, a, b, t) of T . The
Controller has to simulate this by a transition (piq, a, b, p

i
r)

in ΠTni
i , where the vector v describing the current configu-

ration of ΠTni
i is updated by an update vector in U(a,b).

We define therefore the following multi-dimensional en-
ergy game GT1,...,Tm,T :

• The state set of GT1,...,Tm,T is (S×Σ)∪S where S is the
state set of T and Σ the input alphabet of T . The partition
is Q0 = S × Σ and Q1 = S.

• For each transition (s, a, b, t) of T , we have in
GT1,...,Tm,T the transitions ((s, a),u, t) for all u ∈ U(a,b)

(Player 0’s moves) and a transition (s,0, (s, a)) (Player
1’s move). (Essentially we add an input symbol to the
source state of the transition, instead of having it as a
label of this transition.) Note that the only transitions of
Player 0 possible from (s, a) are the ones which result in
the same output symbol produced by one of the resource
transducers as the output of T .

Intuitively, the initial configuration is (s0,v0) where v0

corresponds to all copies of resource transducers being in
their initial states. At each round of the game in configu-
ration (s,v), Adversary chooses a transition (s, a, b, t) for
t = f(s, a) and b = g(s, a), with resulting configuration
((s, a),v). Controller responds by choosing an update vec-
tor u ∈ U(a,b) resulting in (t,v + u). Recall that Controller
wins the multi-dimensional energy game GT1,...,Tm,T if it is
able to always keep all counters non-negative.

Theorem 2. Let T1, . . . , Tm be resource transducer types
and T a process recipe transducer. ΠTni

i realizes T iff
Controller wins the game GT1,...,Tm,T from configuration
(s0, (n1,0, . . . , nm,0)) where the counter corresponding to
each initial state of Ti has value ni and the rest of the coun-
ters are 0.

Proof. Suppose there is a Controller for realizing T on
ΠTni

i . Then a winning strategy for Player 0 on GT1,...,Tm,T

is given as follows. Suppose the Controller’s move on input
Σ+ is (i, j) (give current input to the jth copy of Ti) and the
state of ΠTni

i on input Σ+ is v. Then the update vector for
the next move by Player 0 is to decrementing the counter for
the current state of piq of Ti,j and incrementing the counter
for the state of Ti,j resulting from the input corresponding
to the last symbol in Σ+. By the assumption of realizability,
the counter of pi must be positive and hence the decrement
does not make it negative. Hence Player 0 can always make
a safe move and has a winning strategy in GT1,...,Tm,T from
configuration (s0, (n1,0, . . . , nm,0)).

For the other direction, suppose Player 0 has a
winning strategy in GT1,...,Tm,T from configuration
(s0, (n1,0, . . . , nm,0)). For every sequence of game
configurations (which include input symbols), there is a
move by Player 0 which corresponds to incrementing some
pir counter and decrementing some piq counter. So the
Controller needs to pick some arbitrary copy j of transducer
Ti,j and give it the input. By assumption, there is at least
one copy of Ti in state piq , so this choice is always possible,
and the transition Ua,b will produce the output matching
that of T on the same input by the construction of Ua,b.

Given T1, . . . , Tm and T , we can construct a game
GT1,...,Tm,T and check, using Theorem 1, whether Player
0 has a winning strategy starting in a configuration with the
counter evaluation corresponding to all Ti being in the ini-
tial state, that is, (n1,0, . . . , nm,0) for some n1, . . . , nm. If
it does, then T is realizable using T1, . . . , Tm.

Corollary 1. Let T1, . . . , Tm be resource transducers and
T a process recipe transducer. The unbounded orchestra-
tion problem for T1, . . . , Tm and T is decidable in doubly
exponential time.

3 Multi-Transducer Setting
In this section, we consider the unbounded orchestration
problem for multi-transducers. Multi-transducers were pro-
posed in (De Giacomo et al. 2018) as a more natural formal-
ism for modeling manufacturing resources that take multiple
inputs and generate a single output (e.g., assemble parts to-
gether into a single compound part), or that take a single
input and generate multiple outputs (e.g., cut a sheet of raw
material into two or more parts).

In the multi-transducer setting, both the manufacturing
resources and the process recipe are modeled as multi-
port transducers, or multi-transducers for short. A multi-
transducer T = (Σ, S, s0, f, g, k, l) is a deterministic tran-
sition system with k input ports and l output ports. Σ is the
alphabet (of both inputs and outputs), S is the set of states,
s0 the initial state, f : S×Σk −→ S is the transition relation
that takes a state and k input symbols and returns the succes-
sor state, and g : S × Σk −→ Σl is the output function that
returns the outputs associated with a transition. Ports can
be physical or virtual, that is, accept/output physical objects
such as parts, or signals such as messages specifying that a
particular operation should be performed. A physical output
port can be bound only to one (physical) input port, while a
virtual output port can be bound to multiple (virtual) input
ports. An input port, however, should not be bound to more
than one output port. In addition, binding constraints can be
used to specify physical connections between resources on
the shop floor, or the set of virtual connections determined
by the possible communication routes between resources.
Critically, the port bindings specifying connections between
resources can be changed while the facility is manufactur-
ing a product: parts (or signals) output by a resource can be
directed to the input ports of different resources at different
points during the realization of the recipe.

3.1 Orchestration
We now state the orchestration problem for mult-
transducers. We are given a set of multi-transducer types
T1, . . . , Tm, where each Tj = (Σ, Sj , s0j , fj , gj , kj , lj)
(i.e., all Tj are over the same alphabet) representing man-
ufacturing resources. We are also given a recipe T that is a
multi-transducer with the same alphabet as the Tjs.

The behavior of T on input w = a0a1 . . ., where ai ∈
Σk, is described by the following sequence of states and out-
puts:
T s(a0) = f(s0,a

0)

T o(a0) = g(s0,a
0)

. . .
T s(a0 . . .ai) = f(T s(a0 . . .ai−1),ai)

T o(a0 . . .ai) = g(T s(a0 . . .ai−1),ai)

The observable output sequence of T on input w is
τo(w, T) = T o(a0), . . . , T o(a0 . . .ai) . . .

Consider P (i.e., the multi-transducer corresponding to
the whole production facility) which is a composition of n1
copies of T1, . . . , nm copies of Tm. In addition to picking a
transducer x ∈ {(1, 1), . . . , (m,nm)}, the controller is also
in charge of changing the port binding, as defined below.

We denote by inx,y the input port y of multi-transducer
Tx, and by outx,y the output port y of Tx. For convenience
we extend this notation by using index x = 0 to denote the
inputs and outputs of the environment. Note that these have
a reversed role: the output of the environment is the input
of the target/set of transducers, and the input to the environ-
ment is the output of the target/set of transducers. We denote
by val(inx,y)/val(outx,y) the value at the input/output port
y of transducer Tx. We also denote by val(inx)/val(outx)
the vector of values at the input/output ports of Tx.

A port binding, or simply binding, is a pair of the form
(outx′,y′ , inx,y) which represents a connection between
the output port y′ of multi-transducer x′ and input port y
of multi-transducer x. A set c of port bindings, henceforth
called binding set, must be consistent with a set of binding
constraints B, specified as boolean combinations of atoms
of the form (outx′,y′ , inx,y); a binding set c is said to be
legal iff c |= B. We use the set B to impose three kinds of
requirements:

i for all x, y (with x ∈ {0, (1, 1), . . . , (m,nm)} and
y ∈ {1, . . . , kx}) there exists at most one x′, y′ such
that (outx′,y′ , inx,y) ∈ c (if, for some z ∈ {1, . . . , kx},
inx,z does not appear in c, its value is assumed to be
empty, i.e., val(inx,z) = ε);

ii all physical output ports outx′,y′ occur in at most one
binding (outx′,y′ , inx,y) ∈ c; and

iii arbitrary requirements specifying, e.g., the possible
physical connections between machines on the shop
floor, or the set of virtual connections determined by the
possible communication routes between resources.

We denote the set of all possible port binding sets by Cntl.
Consider P = T1,1×· · ·×Tm,nm (i.e., the transducer cor-

responding to the whole production facility, with nj copies
of each type Tj). A controller C for P is a strategy C :
(Σk)+ −→ Cntl. The sequence of (global) states and out-
puts generated by the controller on w = a0 . . .ai . . . is, re-
spectively,

τw,C = (s01,1, . . . , s
0
m,nm

), . . . , (si1,1, . . . , s
i
m,nm

) . . .
τow,C = b0, . . . ,bi, . . .

where

• C(a0 . . .ai) = ci and ci is legal;

• val i(inx,y) = val i(outx′,y′) for (outx′,y′ , inx,y) ∈ ci

(recall that val i(inx,y) = ε whenever inx,y does not ap-
pear in ci);

• si+1
x = fx(six, val

i(inx)) for x ∈ {(1, 1) . . . , (m,nm)};
• val i(outx) = gx(six, val i(inx)) for x =
{(1, 1), . . . , (m,nm)};

• val i(out0) = ai (note the inversion of out/in for 0);

• val i(outx,y) = biy′ if (outx,y, in0,y′) ∈ ci.
C realizes T if τo(w, T) = τo(w,C) for all w. The or-
chestration problem for multi-transducers is the same as
for uni-transducers: given a target T and resource types

T1, . . . , Tm, are there numbers of copies n1, . . . , nm and a
C for P = T1,1 × · · · × Tm,nm such that C realizes T .

Note that orchestration in the multi-transducer case
works differently from the uni-transducer case. In the uni-
transducer case, the controller selects only one transducer
to make a move. In the multi-transducer case, the controller
binds ports, and all transducers T1,1, . . . , Tm,nm get input
(possibly empty) and move at every step.

3.2 Orchestrator Synthesis
In the bounded case (when there is exactly one resource
transducer of each type), the problem of synthesizing a con-
troller that solves the orchestration problem is no more dif-
ficult than in the case of uni-transducers, in spite of the fact
that we need to control multiple inputs and outputs in the
available transducers and the port bindings, which change
dynamically over time. This has been shown in (De Gia-
como et al. 2018). However, as we show below, for the un-
bounded case the problem is undecidable. The main reason
for the undecidability is the combination of multiple input
and output ports and no bound on the number of transduc-
ers, since both the unbounded orchestration problem for uni-
transducers, and the bounded problem for multi-transducers
are decidable. A similar undecidable setting is data-flow
composition (Lustig and Vardi 2009), that also assumes the
ability to connect together unbounded number of compo-
nents and control data flow from one component to another.
Having constraints on port bindings is not essential for the
undecidability.

Theorem 3. The unbounded orchestration problem for
multi-transducers is undecidable.

Proof. We prove that the problem is undecidable by exibit-
ing an example where such a controller exists if and only if
a Turing machine M halts on empty input.

In our construction, the target transducer is T which on
input a outputs a. Formally, T = (Σ, S, s0, f, g, 1, 1), where
Σ = {a}, S = {s0}, f(s0, a) = s0 and g(s0, a) = a.

The resource transducer types intuitively correspond to
cells of the tape of a Turing machine M . M is a single
tape TM with instructions of the form qc −→ c′dq′, where
d ∈ {−1, 1}, which means, if in state q reading symbol
c, write symbol c′, move to the left (if d = −1) or to the
right (d = 1) and go into state q′. The leftmost cell contains
a special symbol α, the tape starts blank, and the machine
writes 0s and 1s in the cells it visits. The machine starts in
initial state q0 and halts if it goes into the accepting state
qn; otherwise it continues forever. Without loss of general-
ity, we assume that M performs the following operations
between executing any two ‘real’ instructions: it adds a cell
to the right (writes a symbol ω in the cell to the right of
the rightmost non-blank cell), then goes all the way to the
left until it reaches the leftmost cell, and then comes back
to where it was after the last ‘real’ instruction, and then ex-
ecutes the next ‘real’ instruction. The first unnecessary pro-
cedure (adding a cell to the right) ensures that if M does not
halt, then it uses infinitely many cells. The second procedure
is a technical device we need in the proof below to impose

a particular binding of input and output ports in any com-
position of resource transducers. Any TM can be converted
to a TM which executes the two unnecessary procedures, by
adding a fixed number of extra states and symbols. (Let us
assume that in addition to 0, 1, α and ω, the machine can
write symbols h1, . . . , ht.) Finally, we also require that M
only reaches the state qn (if it does) if it is in the the right-
most cell which has been used, and on the last pass from left
to right over the tape, it erases all the symbols on the tape
apart from α.

We have three types of resource transducer: Tl, Tm and
Tr, corresponding to the leftmost cell, middle cell(s), and
rightmost cell of M , respectively. The alphabet of resource
transducers is Σ′ = {q0, . . . , qn, a, err}, where q0, . . . , qn
correspond to states of M .

The basic idea of encoding M ’s tape cells as transducers
is that transducer’s internal states correspond to which sym-
bol is on the tape in the cell; inputs and outputs encode the
head arriving into the cell and the state of M .

Left cell transducer Tl Tl has two input ports 1 and 2; in-
tuitively, 1 is an input port for receiving input a from the
environment, and 2 is an input port for receiving internal in-
puts from the cell on the right. Tl has one output port for
communicating with the cell on the right. Tl starts in state
sinit (intuitively, corresponding to containing α and being
in state q0) and on input a on input port 1 and blank on 2
(on input (a, ε)), it mimics the instruction of M : writes α
again, and outputs symbol qi which is the state M goes into
upon empty input. Tl then goes into state sα. If Tl receives
input qj from the right ((ε, qj)), in sα, it again does what the
instruction of M requires, and outputs the new state q′. On
all other inputs in all other states Tl outputs err and goes in
state serr. The states of Sl are {sinit, sα, serr}.
Middle cell transducer Tm Tm has two input ports and two
output ports. Intuitively, input 1 and output 1 connect to the
cell on the left, and input 2 and output 2 connect to the cell
on the right. Input (q, ε) means receiving q from the left,
and input (ε, q) means receiving q from the right. Similarly
for outputs: the output (q′, ε) corresponds to moving to the
cell to the left in state q′, and (ε, q′) means moving to the
cell to the right in state q′. The states of Tm are sε (being
blank, initial state), s0 (containing 0), s1 (containing 1), sω ,
sh1 , . . . , sht , serr. On input q when in state sc the transducer
will go into state sc′ and output q′ on the left output port (if
d = −1) or on the right (if d = 1) output port. On all other
inputs, for example input from the right when in state sε, it
goes into serr and outputs err.

Right cell transducer Tr Tr has one input port (from the
cell to the left) and two output ports; one of them (the sec-
ond one) can be used to output a. This only happens when
M would have gone into state qn (so instead of outputting
qn, Tr outputs a). Otherwise Tr mimics M ’s transitions:
when it is in state sc and receives q on the left, it goes
into state sc′ and outputs q′ to the left. In all other cases,
in particular when getting as input a state symbol which
corresponds to moving one cell to the right to write ω in
it, Tr goes into serr and outputs err. The states of Tr are
Sr = {sε, sω, s0, s1, sh1

, . . . , sht
, serr}.

Let us call a composition of several Tl, Tm and Tr-type
transducers correctly wired if it corresponds to a tape of M :
there is a Tl on the left with its input 1 connected to the
environment (or to a copy of Tr, see below); Tr on the right
with its output 2 connected to the environment (or to a copy
of Tl, see below); and between them are 0 or more Tms, so
that for each Tm x there is exactly one other transducer y
such that x’s input 1 and output 1 are connected to input 2
and output 2 of y (which can only be another Tm or Tl),
and similarly there is exactly one z such that x’s input 2 and
output 2 are connected to input 1 and output 1 of z (which
can only be another Tm or Tr). Note that we do not rule out a
wiring corresponding to a sequential composition of several
tapes of M : that is, when a Tr is wired to another Tl etc., so
long as there is a Tl on the left and Tr on the right connected
to the environment.

We are going to prove the following two statements:

A A controller for a correctly wired composition of length
k realizing T exists if and only if M halts after using k
cells.

B For any other composition (not correctly wired) there is
no controller that realizes T .

From A and B, it follows that a controller for a composition
of some number of copies of Tl, Tm and Tr exists if, and
only if, M halts.

Let us prove A first. Suppose we have a correctly wired
composition of length k. It has a single free input port (be-
longing to a Tl), so all a controller can do is to pass a to
that port. On input a, Tl starts the imitation of a Turing ma-
chine M , passing symbols corresponding to the states of M
back and forth along the composition, with cell transducers
changing states to represent a new symbol on the tape of
M in the corresponding cell. If M halts in the kth cell of
the tape, eventually Tr gets input qn, upon which it outputs
a, and T is realised. If M does not halt, then eventually Tr
will get an input for moving to the right to write ω in it, and
Tr outputs err. Note that since before halting, M erases the
tape, the transducers are returned to the initial state before
the output of a, and are ready for the next input of a.

For B, first of all observe that the only type of transducer
that can take input a is Tl, and the only one that can output a
is Tr. So any composition which does not connect Tl’s input
1 to the environment’s output or Tr’s output 2 to the input of
the environment is not going to work. Next we need to show
that the wiring in the middle is correct. First of all, the regu-
lar trip to the beginning of the tape that M performs makes
sure that if the wiring is incorrect in connecting input 2 to
output 1 (‘left’) of some transducer, then output err will be
produced, because some cell would receive input ‘from the
right’ (on its input port 2) while it is still blank (in state sε).
Similarly, the lack of a consistent path ‘to the right’ (every
cell’s output 2 connected to the right neighbour’s input 1)
means that when adding an ω in the rightmost cell to the
right, we either discover a blank cell before the next ω cell,
or discover a blank cell while going to the left to the begin-
ning of the tape.

4 Related work
There is a substantial literature on flexible manufactur-
ing from an engineering perspective. For example, Flexi-
ble Manufacturing Systems (Browne et al. 1984; Sethi and
Sethi 1990; ElMaraghy 2005) increase the range of products
that may be assembled, and Reconfigurable Manufacturing
Systems (Bi et al. 2008; Koren et al. 1999; Mehrabi, Ulsoy,
and Koren 2000; Smale and Ratchev 2009) reduce response
time.

More recently, a range of AI approaches have been pro-
posed to the automated synthesis of manufacturing process
plans. For example, (Ciortea, Mayer, and Michahelles 2018)
present an approach to flexible agent-based manufacturing
systems, in which autonomous agents synthesize production
plans using semantic descriptions of Web-based artifacts and
coordinate with one another via multi-agent organizations.
The motivation of their work, namely the repurposing man-
ufacturing lines ‘on-the-fly’, has some similarities with that
presented here. However, their approach is based on AI plan-
ning, and considers a fixed rather than unbounded set of re-
sources.

As noted in the introduction, there has also been a strand
of work on applying techniques based on AI behavior com-
position (Berardi et al. 2003; De Giacomo, Patrizi, and
Sardiña 2013) to determine whether and how a particular
product can be manufactured by a particular set of manu-
facturing resources. For example, (Felli, Logan, and Sardina
2016) have applied synthesis techniques in a traditional mass
production setting. They introduce a novel solution concept,
target production processes, that are able to manufacture
multiple instances of a product simultaneously in a given
manufacturing facility, and give a technique for synthesiz-
ing the largest target production process, together with an
associated controller. The work on the automated synthesis
of process plans discussed in the introduction (de Silva et
al. 2016; Felli et al. 2017) is perhaps closer to our work,
in focussing on the ‘on-the-fly’ generation of process plan
controllers in a mass customization setting. Their approach
takes as inputs a process recipe and a production topology
specifying the available manufacturing resources and their
interconnection, and outputs a process plan controller capa-
ble of synthesizing a single instance of the product at a time.
Controller synthesis is polynomial in the size of the topol-
ogy (which is exponential in the number of resources and
polynomial in their size) and exponential in the size of the
process recipe and number of resources.

The approaches proposed in (de Silva et al. 2016; Felli et
al. 2017) involve considerable bookkeeping and are some-
what ad-hoc, which makes it difficult characterize how the
synthesis of controllers for manufacturing relates to the ex-
isting rich literature and tools on reactive synthesis, e.g.,
(Grädel, Thomas, and Wilke 2003; Pnueli and Rosner 1989;
Lustig and Vardi 2009; De Giacomo et al. 2010; Ehlers et al.
2017). In particular, materials and unfinished parts are rep-
resented explicitly, and manufacturing operations transform
sets of input parts into sets of output parts. Moreover, re-
sources may perform additional low-level actions not explic-
itly prescribed by the process recipe, including the move-
ment of parts between resources through transfer operations.

A more general approach was proposed in (De Giacomo
et al. 2018). That work generalizes the movement of parts
and data in the system and considers both physical and logi-
cal connections between machines; it also abstracts away the
execution of additional low-level actions by focusing only
on the observable behavior of resources. Their approach
is based on the standard model of input/output transduc-
ers and captures the essence of process recipes and manu-
facturing resources, thus relating the synthesis of process-
plan controllers to classical reactive synthesis. The prob-
lem of whether a given manufacturing facility can realize
a process recipe is shown to be decidable and EXPTIME-
complete. We use the same framework as in (De Giacomo
et al. 2018) but study the unbounded version of controller
synthesis problem: when only the resource types but not the
required number of each resource type are known.

The synthesis of transducers was also studied in (Exibard,
Filiot, and Jecker 2018), but in the context of synthesizing a
single deterministic transducer for a non-deterministic spec-
ification. In (Nourine, Hassen, and Toumani 2016) the au-
thors establish decidability of service (transducer) compo-
sition when unbounded copies of services (transducers) are
allowed. Their technique is quite complex and gives only
an Ackermannian upper bound (more than non elementary),
in the general case. The undecidability result for the multi-
transducers is analogous to the undecidability for data-flow
composition (Lustig and Vardi 2009).

The problem of synthesizing process-plan controllers is
also related to supervisory control. However, in supervisory
control, the focus is on controlling a plant so as to maintain a
safety condition. In our case, synthesis generates an orches-
trator to coordinate several available machines so as to real-
ize a target plant. In the simpler case of service composition,
the similarities and differences between supervisory control
and orchestration have been studied in detail in (Barati and
St.-Denis 2015; Felli, Yadav, and Sardiña 2017).

5 Conclusions and Future Work
In this paper, we address the problem of unbounded orches-
tration, that is related to the problem of provisioning man-
ufacturing facilities: given the process plans to be imple-
mented, decide how many of each type of manufacturing
resource is needed. We prove that if process plans and re-
sources are represented as uni-transducers, the problem of
whether the precess plan is realizable with given resource
types is decidable in 2EXPTIME, and the Pareto optimal
values for the numbers of each type of resource can be com-
puted. In the case of multi-transducers, we show that the
problem is undecidable.

In future work we plan to investigate decidable cases of
orchestration for multitransducers. Other open questions in-
clude various notions of optimality for the resulting pro-
duction plans (in addition to minimizing the number of re-
sources of each type as we do here): e.g.,, spreading the load
on various resources. In the longer term, we plan to explore
implementations of our approach in a practical tool.

Acknowledgments. Work supported in part by the
Sapienza project “Immersive Cognitive Environments”,
NSF grants CCF-1319459 and IIS-1527668, by NSF Ex-
peditions in Computing project ”ExCAPE: Expeditions in
Computer Augmented Program Engineering”, and by the
Unibz DACoMan projec. T.B. was supported by the Czech
Science Foundation, grant No. 18-11193S. We thank Syl-
vain Schmitz for discussion on complexity of energy games
and Dominik Velan for carefully reviewing material relating
to energy games.

References
Barati, M., and St.-Denis, R. 2015. Behavior composition
meets supervisory control. In 2015 IEEE International Con-
ference on Systems, Man, and Cybernetics, 115–120.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.;
and Mecella, M. 2003. Automatic composition of e-services
that export their behavior. In Proceedings of ICSOC, 43–58.
Bi, Z. M.; Lang, S. Y.; Shen, W.; and Wang, L. 2008. Re-
configurable manufacturing systems: the state of the art. In-
ternational Journal of Production Research 46(4):967–992.
Browne, J.; Dubois, D.; Rathmill, K.; Sethi, S. P.; and
Stecke, K. E. 1984. Classification of flexible manufactur-
ing systems. The FMS magazine 2(2):114–117.
Ciortea, A.; Mayer, S.; and Michahelles, F. 2018. Repurpos-
ing manufacturing lines on the fly with multi-agent systems
for the web of things. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2018), 813–822.
De Giacomo, G.; Felli, P.; Patrizi, F.; and Sardiña, S. 2010.
Two-player game structures for generalized planning and
agent composition. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 2010),
297–302.
De Giacomo, G.; Vardi, M.; Felli, P.; Alechina, N.; and
Logan, B. 2018. Synthesis of orchestrations of trans-
ducers for manufacturing. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI-
18), 6161–6168.
De Giacomo, G.; Patrizi, F.; and Sardiña, S. 2013. Auto-
matic behavior composition synthesis. Artificial Intelligence
196:106–142.
de Silva, L.; Felli, P.; Chaplin, J. C.; Logan, B.; Sander-
son, D.; and Ratchev, S. 2016. Realisability of production
recipes. In Proceedings of the 22nd European Conference
on Artificial Intelligence (ECAI-2016), 1449–1457.
de Silva, L.; Felli, P.; Chaplin, J. C.; Logan, B.; Sanderson,
D.; and Ratchev, S. 2017. Synthesising industry-standard
manufacturing process controllers (Demonstration). In
Proceedings of the 16th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2017),
1811–1813.
Ehlers, R.; Lafortune, S.; Tripakis, S.; and Vardi, M. Y.
2017. Supervisory control and reactive synthesis: a com-
parative introduction. Discrete Event Dynamic Systems
27(2):209–260.

ElMaraghy, H. A. 2005. Flexible and reconfigurable manu-
facturing systems paradigms. International Journal of Flex-
ible Manufacturing Systems 17(4):261–276.
Exibard, L.; Filiot, E.; and Jecker, I. 2018. The complex-
ity of transducer synthesis from multi-sequential specifica-
tions. In 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, volume 117
of LIPIcs, 46:1–46:16.
Felli, P.; de Silva, L.; Logan, B.; and Ratchev, S. 2017.
Process plan controllers for non-deterministic manufactur-
ing systems. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), 1023–
1030.
Felli, P.; Logan, B.; and Sardina, S. 2016. Parallel behavior
composition for manufacturing. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJ-
CAI 2016), 271–278.
Felli, P.; Yadav, N.; and Sardiña, S. 2017. Supervisory con-
trol for behavior composition. IEEE Transactions on Auto-
matic Control 62(2):986–991.
Grädel, E.; Thomas, W.; and Wilke, T. 2003. Automata,
Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of LNCS. Springer.
Hopcroft, J., and Ullman, J. 1979. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.
Jurdzinski, M.; Lazic, R.; and Schmitz, S. 2015. Fixed-
dimensional energy games are in pseudo-polynomial time.
In Proceedings of ICALP 2015, 260–272.
Koren, Y.; Heisel, U.; Jovane, F.; Moriwaki, T.; Pritschow,
G.; Ulsoy, G.; and Van Brussel, H. 1999. Reconfigurable
manufacturing systems. CIRP Annals-Manufacturing Tech-
nology 48(2):527–540.
Lu, Y.; Xu, X.; and Xu, J. 2014. Development of a hy-
brid manufacturing cloud. Journal of Manufacturing Sys-
tems 33(4):551–566.
Lustig, Y., and Vardi, M. Y. 2009. Synthesis from compo-
nent libraries. In de Alfaro, L., ed., Proceedings of FOS-
SACS, 395–409.
Mehrabi, M. G.; Ulsoy, A. G.; and Koren, Y. 2000. Recon-
figurable manufacturing systems: key to future manufactur-
ing. Journal of Intelligent Manufacturing 11(4):403–419.
Nourine, L.; Hassen, R. R.; and Toumani, F. 2016. De-
cidability and complexity of web service business protocol
synthesis. International Journal of Cooperative Information
Systems 25(3):1–43.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’89, 179–190.
Sethi, A. K., and Sethi, S. P. 1990. Flexibility in manufac-
turing: a survey. International Journal of Flexible Manufac-
turing Systems 2(4):289–328.
Smale, D., and Ratchev, S. 2009. A capability model and
taxonomy for multiple assembly system reconfigurations.
In Proceedings of IFAC Symposium on Information Control
Problems in Manufacturing, volume 13, 1923–1928.

