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Alternating Time Temporal Logic (ATL) is widely used for the verification of multi-
agent systems. We consider Resource Agent Logic (RAL), which extends ATL to allow 
the verification of properties of systems where agents act under resource constraints. 
The model checking problem for RAL with unbounded production and consumption of 
resources is known to be undecidable. We review existing (un)decidability results for 
fragments of RAL, tighten some existing undecidability results, and identify several aspects 
which affect decidability of model checking. One of these aspects is the availability of a 
‘do nothing’, or idle action, which does not produce or consume resources. Analysis of 
undecidability results allows us to identify a significant new fragment of RAL for which 
model checking is decidable.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many problems in AI and multi-agent systems research are most naturally formulated in terms of the abilities of a group 
or coalition of agents. For example, a group of agents may be able to cooperate to achieve an outcome which cannot be 
achieved by any agent in the group acting individually. In many cases, whether the outcome can be achieved depends 
critically on the resources available to the agents. Money is an obvious example, but there are many kinds of resources that 
may be produced or consumed by the actions of agents. For example, whether a team of agents can cooperate to extinguish 
a fire may depend on the amount of fuel and water they have available. Several logics for reasoning about coalitional ability 
under resource bounds have been proposed in the literature [1–7]. These resource logics allow us to express properties such 
as: ‘a coalition of agents A has a strategy (a choice of actions) requiring no more than b resources, such that whatever the 
actions by the agents outside the coalition, any evolution of the system generated by the strategy satisfies some temporal 
property’. Using model checking techniques we can then verify that a given coalition has a strategy requiring less than b
resources to enforce an outcome, whatever the other agents in the system (or the environment) do. The ability to verify 
such properties can be useful when designing or developing a resource-constrained multi-agent system.

Unfortunately, the model checking problem for many resource logics where actions can produce resources is undecidable 
[2,5]. Recently, however, it was shown that some resource logics where actions can produce resources have a decidable 
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model checking problem [6–8].1 In this paper, we investigate the reasons for the decidability or undecidability of the model 
checking problem for resource logics. Different syntactic and semantic choices give different variants of resource logics. 
Some of these choices are known to affect the decidability of the model checking problem. In particular, the decidability 
result in [6] was proven in the presence of two major restrictions, called, in the terminology of [2], resource flat and pro-
ponent restricted. The former assumes that agents are always re-equipped with fresh resources when they reconsider their 
strategies; the latter assumes that only the proponents act under resource bounds (i.e., agents outside the coalition are not 
resource bounded). In addition to these restrictions, another choice in the semantics is relevant for the decidability result 
in [6]. This choice, which is also related to the finitary and infinitary semantics of [2], stipulates that, in every model, agents 
always have a choice of doing nothing (executing an idle action) that produces and consumes no resources. Having an idle
action makes model checking easier: intuitively, its availability ensures that in order to determine whether a coalition can 
enforce a φ-state after finitely many steps and within a given resource bound, we only need to find a finite strategy to 
enforce φ under the given resource bound, and after φ is achieved, the agents can always choose the idle action forever, 
which does not increase the ‘cost’ of the strategy. The presence of an idle action in the logic also guarantees some attractive 
formal properties. For example, as stated in [3], it ensures coalition monotonicity: if a coalition A can ensure a property 
under resource bound b, then any larger coalition can also ensure this property under the same resource bound (intuitively, 
the extra agents can always perform idle).

In this paper, we investigate the effects of various semantic choices, such as the availability of an idle action, on the 
decidability of the model checking problem for resource logics. First we show that both the resource-flat and the proponent-
restricted fragments of resource agent logic remain undecidable in the presence of idle actions. We then identify and 
motivate a significant, non-resource-flat fragment that has a decidable model checking property in the presence of idle 
actions, and is not decidable otherwise. It follows that idle actions can make a difference for the decidability of model 
checking with respect to the semantics we consider.

The new fragment, which we call pprRAL, allows us to express statements about the existence of nested strategies for a 
coalition of agents given some initial allocation of resources. Unlike the resource-flat fragment considered in [6], where for 
each new strategy agents are re-equipped with a fresh set of resources, pprRAL allows us to express properties such as ‘given 
their initial battery charge, rescue robots A can safely get to a position from which they can perform rescue while in visual 
contact with the base’. There are two nested strategies implicit in this property: first, the robots should be able to reach 
some position (not necessarily maintaining visual contact with the base), and second, from this position, the agents should 
be able to perform rescue while in visual contact with the base. The first strategy (getting into position) will require certain 
resources (in this case battery charge), and the amount of resources required will depend on the environment. Then, with 
whatever resources are left, the agents need a strategy to perform the rescue. In this example, the model checking problem 
essentially corresponds to finding two nested conditional resource-constrained plans, see e.g., [10]. The plans are nested 
because it is impossible to decouple the second plan (for rescue) from the results of the first plan (getting into position), 
since we do not know the resource availability for the initial state of the second plan; the resource availability in that state 
is determined by resource consumption of the first plan. Compared to conditional planning with resources, resource logics 
provide an easy way to talk not just about reachability, but also about invariants and nested goals/strategies achieved by 
(potentially different) coalitions.

This paper extends results presented in [7] in several respects, including: a more general definition of a decidable 
fragment, more elaborated intuitions regarding the (un)decidability results, detailed proofs of all theorems, and tighter un-
decidability results (in terms of the number of agents and resource types required for undecidability). The remainder of the 
paper is organised as follows. In Section 2 we briefly survey related work. In Section 3 we introduce resource agent logic, 
its models and the semantics. In Section 4, we review known decidability results for resource agent logic, and investigate 
the reasons for (un)decidability. We present new undecidability results for systems with a single resource type, and, based 
on these results, we motivate and introduce a new non-resource flat fragment of RAL, pprRAL. In Section 5, we present our 
second main technical result: a decidability result for pprRAL. We conclude in Section 6.

2. Related work

Early work on resource logics considered only the consumption of resources (i.e., no action produces resources), and 
initial results on the complexity of model checking were encouraging. One of the first logics capable of expressing resource 
requirements of agents was a version of Coalition Logic (CL)2 called Resource-Bounded Coalition Logic (RBCL), where actions 
only consume (and do not produce) resources. It was introduced in [1] with the primary motivation of modelling systems of 
resource-bounded reasoners; however the framework is sufficiently general to model any type of action. The model checking 
problem for RBCL was shown to be decidable in time polynomial in the size of the transition system and of the property, 
and exponential in the number of resource types in [12]. A resource-bounded version of ATL, RB-ATL, where again actions 
only consume (and do not produce) resources was introduced in [3]. The model checking problem for this logic is also 
decidable in time polynomial in the size of the transition system and of the property, and exponential in the number of 

1 A preliminary version of [8] is available as a technical report [9].
2 CL is a fragment of ATL with only the next time 〈 〈A〉 〉X modality, introduced in [11].
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resource types [3]. (For a single resource type, e.g., energy, the model checking problem is no harder than for ATL.) Practical 
work on model checking many standard computer science transition systems (not multi-agent systems) with resources also 
falls in the category of consumption-only systems. For example, probabilistic model checking of systems with numerical 
resources as in the PRISM model checker [13] assumes that costs increase monotonically with time.

However, when resource production is considered in addition to consumption, the situation changes. In a separate strand 
of work, a range of different formalisms for reasoning about resources was introduced in [14,2], including Resource Agent 
Logic RAL which is the main focus of this paper. In these formalisms, both consumption and production of resources was 
considered. In [2], it was shown that the model checking problem for most variants and fragments of RAL is undecidable. 
The only decidable cases considered in [2] (and the related [14]) are an extension of Computation Tree Logic (CTL) with 
resources (essentially one-agent ATL), and a version where on every path only a fixed finite amount of resources can be 
produced. The models satisfying this property were referred to as bounded in [2]. It was pointed out in [2] that RBCL 
and RB-ATL are logics over a special kind of bounded models (where no resources are produced at all). Other decidability 
results for bounded resource logics have also been reported in the literature. For example, in [15] a decidable logic, PRB-ATL 
(Priced Resource-Bounded ATL) is defined, where the total amount of resources in the system has a fixed bound. The model 
checking algorithm for PRB-ATL requires time polynomial in the size of the transition system, and exponential in the number 
of resource types and the resource bound on the system. In [4] an EXPTIME lower bound in the number of resource types 
for the PRB-ATL model checking problem is shown. In [16], an extension of PRB-ATL to μ-calculus is also shown to have a 
decidable model checking problem.

A general logic over systems with numerical constraints, Quantitative ATL (QATL∗), was introduced in [5], and unde-
cidability results for the model checking problem for QATL∗ and some of its fragments were shown. For example, QATL 
is undecidable even if no nestings of cooperation modalities are allowed. The main proposals for restoring decidability to 
the model checking problem for QATL in [5] are removing negative payoffs (similar to removing resource production), and 
introducing memoryless strategies (the latter idea is not pursued in any detail).

This brief survey of work suggests that the boundary between decidability and undecidability for the model checking 
problem of resource logics is very subtle. No systematic study of the reasons for decidability and undecidability of this 
problem has been undertaken to date, and with this paper we aim to address this task. We believe a better understanding 
of the boundary between decidability and undecidability will be useful in developing new decidable fragments of resource 
logics.

Of course, searching for decidable fragments is not the only way of addressing the undecidability of model checking 
for temporal logics with infinite-state transition systems (RAL can be seen as a special case of such logics). Another ap-
proach is to design algorithms which return definite answers where possible, and ‘unknown’ otherwise (see, e.g., [17–21]). 
A promising direction of future research would be to explore connections between the two approaches. Our work connects 
to many other areas of computer science, such as planning [10] and the verification of autonomous systems [22,23]. The 
model checking problem can essentially be seen as an approach to computing a robust plan for a set of autonomous agents, 
such as robots. Techniques used in our work are related to many subfields of theoretical computer science. In particular, 
techniques developed for Petri nets, vector addition systems and model checking over pushdown systems (see, e.g., [24,25]), 
are closely connected to the techniques we use in establishing our decidability and undecidability results. The existing, deep 
theoretical results in these areas also provide a starting point for establishing complexity bounds for our model checking al-
gorithms, and ideas for restrictions that give fragments with good computational properties. Finally, another branch of work 
on reasoning about resources is based on linear logic [26,27], and related logics such as the logic of bunched implication 
[28–31]. In the future, it would be interesting to explore deeper connections between the resource logics considered in this 
paper, and reasoning about resources using linear logic techniques.

3. Resource agent logic

In this section we define resource agent logic (RAL) and resource-bounded models (RBMs). We essentially follow [2], com-
bined with aspects from [6]. We summarise the similarities and differences between RAL and the resource logics considered 
in [2,6] in more detail in Section 3.5.

3.1. Syntax of RAL

The logic is defined over a set of agents Agt, a set of resources types Res, and a set of propositional symbols �. We 
denote the set of natural numbers by N, the set of natural numbers with zero by N0, the set of natural numbers with 
infinity by N∞ , and the set of natural numbers with zero and infinity by N∞

0 . An endowment (function) η :Agt × Res →N
∞
0

assigns resources to agents; ηa(r) = η(a, r) is the number of resources agent a has of resource type r. En denotes the set of 
all possible endowments. Resource types can represent, for example, money, fuel, battery power, etc. Special minimal and 
maximal endowment functions are denoted by 0̄ and ∞̄, respectively. The former expresses that there are no resources at 
all, whereas the latter equips all agents with an infinite amount of each resource type. (In what follows, for readability we 
will talk about amounts of some resource, rather than of some resource type.) The logic RAL is defined according to the 
grammar of ATL [32]. RAL-formulae are defined by:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A〉〉↓Xϕ | 〈〈A〉〉ηXϕ | 〈〈A〉〉↓ϕUψ | 〈〈A〉〉ηϕUψ | 〈〈A〉〉↓Gϕ | 〈〈A〉〉ηGϕ
B B B B B B
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where p ∈ � is a proposition, A, B ⊆ Agt are sets of agents, and η is an endowment. We also define 〈 〈A〉 〉↓ and 〈 〈A〉 〉η
as abbreviations for 〈 〈A〉 〉↓A and 〈 〈A〉 〉ηA , respectively. The operators X, U, and G denote the standard temporal operators 
expressing that some property holds in the next point in time, until some other property holds, and now and always in the 
future, respectively. There are two types of cooperation modalities, 〈 〈A〉 〉↓B and 〈 〈A〉 〉ηB . In both types of cooperation modality, 
the actions performed by agents in A ∪ B consume and produce resources (actions by agents in Agt \ (A ∪ B) do not change 
their resource endowment). The reading of 〈 〈A〉 〉ηBϕ is that when agents A ∪ B have a resource endowment η, agents A have a 
strategy compatible with this endowment to enforce ϕ (whatever the agents in Agt \ A do, compatible with their resource constraints, 
if any). The evaluation of a modality 〈 〈A〉 〉ηB (re-)equips all agents with a fresh amount of resources: the current resource 
endowment is overwritten by endowment η. The formula 〈 〈A〉 〉↓Bϕ reads similarly but the strategy must be compatible with 
the resources currently available to the agents. In both cases compatible means that the strategy can be executed given the 
agents’ resources. For both modalities it is therefore necessary to keep track of resource production and consumption during 
the execution of a strategy.

3.2. Semantics of RAL

We define the models of RAL as in [2]. Following [6] we also define a special case of these models in which all agents 
have an idle action in their repertoire which neither consumes nor produces resources.

Definition 1 (RBM, iRBM). A resource-bounded model (RBM) is given by M = (Agt, Q , �, π, Act, d, o, Res, t) where

• Agt = {1, . . . , k} is a non-empty set of agents;
• Q is a non-empty set of states;
• π : Q → ℘(�) is a valuation of propositions;
• Act is a finite non-empty set of actions;
• d :Agt × Q → ℘(Act)\{∅} indicates the actions available to agent a ∈ Agt in state q ∈ Q ;
• o maps each state q ∈ Q and action profile α = (σ1, . . . , σk) such that σa ∈ d(a, q) for each a ∈ {1, . . . , k}, to another 

state q′ = o(q, α);
• t : Act × Res → Z models the resources consumed and produced by actions; if t(σ , r) is positive resource r is produced 

by σ , if t(σ , r) is negative resource r is consumed by σ .

An RBM with idle actions, iRBM for short, is an RBM M such that for all agents a and states q in M, there is an action 
σ ∈ d(a, q) with t(σ , r) = 0 for all resource types r. We refer to this action (or to one of them if there is more than one) as 
the idle action of a and denote it by idle.

We will write da(q) instead of d(a, q), and use d(q) to denote the set d1(q) × . . . × dk(q) of action profiles in state q. 
Similarly, dA(q) denotes the action tuples available to A ⊆ Agt in q. For α = (σ1, . . . , σk), we use αA to denote the sub-tuple 
consisting of the actions of agents A ⊆ Agt; moreover, we write αa to refer to σa for a ∈ Agt. Act A is a set of tuples 
of actions by agents in A. We define prod(σ , r) := max{0, t(σ , r)} (resp. cons(σ , r) := | min{0, t(σ , r)}|) as the amount of 
resource r produced (resp. consumed) by action σ . Note that cons(σ , r) is a non-negative number, and for any action σ and 
a resource type r it is not possible that both prod(σ , r) and cons(σ , r) are greater than 0.

In what follows, Q ω denotes the set of all infinite sequences of elements from Q , and Q + denotes the set of all finite 
sequences. A path λ ∈ Q ω is an infinite sequence of states such that there is a transition between two adjacent states. 
A finite path is a finite segment of a path. We define λ[i] to be the (i + 1)-th state of λ, and λ[i, ∞] to be the suffix 
λ[i]λ[i + 1] . . .. We denote a finite sequence λ extended by q by λq. A resource-extended path λ ∈ (Q × En)ω is an infinite 
sequence over Q × En such that the restriction to states (the first component), denoted by λ|Q , is a path in the underlying 
model. The projection of λ to the second component of each element in the sequence is denoted by λ|En . We call any initial 
(finite) suffix of a resource-extended path a finite resource extended path.

A strategy for a coalition A ⊆ Agt is a function sA : Q + → Act A such that sA(λq) ∈ dA(q) for λq ∈ Q + . Such a strategy 
gives rise to a set of (resource-extended) paths. A (η, sA, B)-path is a resource-extended path λ where for all i = 0, 1, . . .
with λ[i] := (qi, ηi) there is an action profile α ∈ d(λ|Q [i]) such that:

1. η0 = η (η describes the initial resource distribution);
2. sA(λ|Q [0, i]) = αA (A follow their strategy);
3. λ|Q [i + 1] = o(λ|Q [i], α) (transition according to α);
4. for all a ∈ A ∪ B and r ∈ Res: ηi

a(r) ≥ cons(αa, r) (each agent has enough resources to perform its action);
5. for all a ∈ A ∪ B and r ∈ Res: ηi+1

a (r) = ηi
a(r) + t(αa, r) (resources are updated);

6. for all a ∈ Agt \ (A ∪ B) and r ∈ Res: ηi+1
a (r) = ηi

a(r) (the resources of agents not in A ∪ B do not change).

The (η, B)-outcome of a strategy sA in q, out(q, η, sA, B) is defined as the set of all (η, sA , B)-paths starting in q. Truth is 
defined over an RBM M, a state q ∈ QM , and an endowment η.
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The semantics is given by the satisfaction relation |= where the cases for propositions, negation and conjunction are 
standard and omitted:

M,q, η |= 〈〈A〉〉↓Bϕ iff there is a strategy sA for A such that for all λ ∈ out(q, η, sA, B), M, λ, η |= ϕ

M,q, η |= 〈〈A〉〉ζBϕ iff there is a strategy sA for A such that for all λ ∈ out(q, ζ, sA, B), M, λ, ζ |= ϕ
M, λ,η |= Xϕ iff M, λ|Q [1], λ|En[1] |= ϕ
M, λ,η |= ϕUψ iff there exists i with i ≥ 0 and M, λ|Q [i], λ|En[i] |= ψ and for all j with 0 ≤ j < i, M, λ|Q [ j], λ|En[ j] |= ϕ
M, λ,η |= Gϕ iff for all i ≥ 0, M, λ|Q [i], λ|En[i] |= ϕ

The model checking problem for RAL is stated as follows: does M, q, η |= ϕ hold? When the context is clear, we simply write 
q, η |= ϕ; if ϕ is only a propositional formula, we sometimes also omit η.

Observe that the standard ATL modalities 〈 〈A〉 〉 can be defined as 〈 〈A〉 〉∞̄
Agt, so the logic is a proper extension of ATL.

Remark 1 (Infinitary and finitary semantics). We refer to the semantics introduced above as infinitary semantics. In [2] the 
main semantics also allows for finite (maximal) paths. We refer to that semantics as finitary semantics. We note that both 
semantics coincide over iRBMs, as it is always possible to extend a path using idle actions.

3.3. The syntactic fragments rfRAL, prRAL and rfprRAL

Following [2] we define three fragments of RAL. The resource-flat fragment, rfRAL, only allows cooperation modalities of 
type 〈 〈A〉 〉ηB : agents are always (re-)equipped with a fresh set of resources whenever they re-consider their strategies. The 
proponent-restricted fragment, prRAL, only allows cooperation modalities of types 〈 〈A〉 〉↓ and 〈 〈A〉 〉η: only the proponents are 
resource bounded. The fragment combining both restrictions (resource-flat and proponent-restricted) is denoted by rfprRAL.

3.4. Running example

We introduce a simple running example to illustrate the syntax and semantics of RAL and its fragments. The example 
represents interactions between two agents: a robot (agent 1) and its environment (agent 2). We consider only one resource 
type, energy. The robot needs to move into a position where it is capable of sending information to the base regularly 
and is also able to charge its battery. Both moving and the communication action require energy, and the charging action 
produces energy. We denote ‘being in a suitable position to send information to the base’ by p. The environment can make 
moving more or less difficult for the agent. We model this by giving the environment an ‘obstruct’ action which has the 
effect of requiring the agent to execute two move actions instead of one (and hence to spend more energy) in order to get 
into position; for the sake of the example, obstructing requires energy. The initial state is q0 where the agent can move 
and the environment can obstruct, and both also can do nothing. If the agent moves and the environment idles, then the 
system reaches a state q1 where p holds and the agent can loop forever between q1 and q3 (which also satisfies p) sending 
data and charging. If the agent does nothing upon reaching the position, it returns to the initial state (under the influence 
of gravity, for example). If in q0 the environment obstructs the agent, the systems reaches a state q2 where the agent can 
execute the move action again to reach q1. To keep the example simple, we assume that in all states apart from q0 the 
environment can only idle.

Formally, we have a resource-bounded model M = (Agt, Q , �, π, Act, d, o, Res, t) where

• Agt = {1, 2}
• Q = {q0, q1, q2, q3}
• � = {p}
• π(q0) = π(q2) = ∅, π(q1) = π(q3) = {p}
• Act = {idle, move, send, charge, obstruct}
• Actions available to the robot: d(1, q0) = {idle, move}, d(1, q1) = {idle, send}, d(1, q2) = {idle, move}, d(1, q3) =

{idle, charge}. Actions available to the environment: d(2, q0) = {idle, obstruct}, d(2, q1) = d(2, q2) = d(2, q3) = {idle}.
• The transition function is as follows:

Transitions from q0 Transitions from q1 Transitions from q2 Transitions from q3

o(q0, (idle, idle)) = q0 o(q1, (idle, idle)) = q0 o(q2, (idle, idle)) = q2 o(q3, (idle, idle)) = q0
o(q0, (move, idle)) = q1 o(q1, (send, idle)) = q3 o(q2, (move, idle)) = q1 o(q3, (charge, idle)) = q1
o(q0, (move,obstruct)) = q2
o(q0, (idle,obstruct)) = q0

• Res = {energy}
• t(idle, energy) = 0, t(move, energy) = −2, t(send, energy) = −1, t(charge, energy) = 1, t(obstruct, energy) = −1.
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Fig. 1. State transition system.

The model is shown in Fig. 1.
Here are some example RAL properties which hold in the model:

• If both agents are resource-bounded, and the initial allocation of resources is 3 units of energy for the robot and 0 
units for the environment, then the robot has a strategy to reach a state from where with the remaining resources it 
can maintain the invariant p. We represent an endowment η that assigns 3 units of energy to agent 1 and 0 units to 
agent 2 by 1:3,2:0:

〈〈1〉〉1:3,2:0
{1,2} �U〈〈1〉〉↓{1,2}Gp

In fact, with environment unable to obstruct, the robot is guaranteed to reach q1 in one step:

〈〈1〉〉1:3,2:0
{1,2} X〈〈1〉〉↓{1,2}Gp

This property belongs to full RAL: it is not in rfRAL since it uses ↓ in 〈 〈1〉 〉↓{1,2}G, nor in prRAL since it restricts the 
resources of the opponent agent 2.

• When both agents are resource bounded, and the environment is restricted to 0 units of energy, then with 2 units of 
energy, the agent can reach the state where it can maintain the invariant with 1 unit of energy:

〈〈1〉〉1:2,2:0
{1,2} �U〈〈1〉〉1:1,2:0

{1,2} Gp

This property belongs to the resource-flat fragment, since the second strategy for the invariant uses a fresh resource 
allocation.

• If only the robot is resource-bounded, and the initial allocation of resources is 5 units of energy for the robot and 0 
units for the environment, then the robot has a strategy to reach a state from where with the remaining resources it 
can maintain the invariant p. The strategy is to execute the move action until the state q1 is reached; in the worst 
case this would require 4 units of energy (since the environment is not resource-bounded, its initial allocation does not 
matter and it can perform the obstruct action). Then with at least one unit of energy remaining, the agent can enter 
the loop between q1 and q3:

〈〈1〉〉1:5,2:0
{1} �U〈〈1〉〉↓{1}Gp

This property does not belong to rfRAL but it does belong to prRAL. It can be written without the argument for the set 
of resource-bounded agents:

〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp

In fact, this property belongs to the fragment with a decidable model checking problem, pprRAL (positive fragment of 
prRAL).

• If only the robot is resource-bounded, then with initial allocation of 4 units of energy, it can reach a state where with 
one unit of energy it can maintain the invariant:
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〈〈1〉〉1:4,2:0�U〈〈1〉〉1:1,2:0Gp

This property belongs to rfprRAL.

3.5. Similarities and differences

We conclude this section with a discussion of similarities and differences between the variant of RAL presented here 
and the original resource agent logics of [2] and the logic of [6]. In the interests of readability, we refer to the setting of [2]
by S1, and to that of [6] by S2.

The language of RAL as given above is almost identical to the setting of S1, except that we do not allow the release 
operator.3 Setting S2 essentially corresponds to the resource-flat and proponent-restricted fragment of RAL. RBMs serve 
as models of S1, where S2 uses iRBMs. There are also differences in how the production and consumption of resources 
are handled. In S2 the resources of a coalition of agents are combined before the resource requirements of actions are 
evaluated. A shortage of resources of one agent can thus be balanced by surplus resources of another agent in the coalition. 
The implicit assumption is that agents in the proponent coalition share their resources. It is not necessary to decide how to 
divide any resources produced, as the coalition sticks together throughout the relevant part of the evaluation of the current 
formula. When a new cooperation modality is encountered, all agents are re-equipped with a new endowment. This is a 
property of the resource-flat and proponent restricted fragment of the logic. This approach cannot be used if the restriction 
of resource-flatness or proponent restrictiveness is dropped. First, a coalition may split-up in a nested modality in which 
agents are not re-equipped with new resources. In this case it is important to know how many resources each individual 
agent has. A similar difficulty arises if an agent in the proponent coalition becomes an opponent in a nested cooperation 
modality. If the logic is not proponent restricted it is necessary to know how many resources this agent possesses. In S1
this issue is addressed by introducing shares. A share models how many resources an individual agents contributes to the 
pool of resources needed to execute the joint action, and also the amount of resources each agent receives when resources 
are produced. This can be seen as a binding agreement about the resource distribution. Again, the underlying assumption is 
that agents in the proponent and opponent coalitions share their resources within the coalition.

As we consider a non-resource-flat variant of RAL here, the approach of S2 is not sufficient, whereas the approach of S1
complicates the presentation. We therefore adopt a less involved formalisation for ease of readability: resources cannot be 
shared within a coalition and each agent is entirely responsible for its own resource balance. Thus, at each moment agents 
have a clearly defined resource endowment. Finally, most results of S1 are given in terms of the finitary semantics whereas 
we require that paths are always infinite (cf. Remark 1).

4. The quest for decidability

If unbounded production of resources is allowed, the model checking problem for many resource logics is undecidable. 
In particular, most fragments of the resource agent logic considered in [2,5] are undecidable. The case of the resource-flat, 
proponent-restricted fragment remained open in [2], but was shown to be decidable in [6,8] (see also [9]):

Observation 1. rfprRAL is decidable over iRBMs.

A natural question arises: can we extend decidability to more expressive fragments? Which restrictions are essential for 
decidability, and which can be relaxed?

The result above relies on three restrictions on RAL: (1) the availability of an idle action; (2) resource flatness, that is, 
each nested quantifier has a fresh endowment; and (3) proponent restriction, that is, there are no resource bounds on the 
opponents. It turns out that all three restrictions are essential for the decidability of rfprRAL, as we explain below.

It follows from [2] that the availability of an idle action is essential for the decidability of rfprRAL:

Observation 2. rfprRAL is undecidable over RBMs.

However, the availability of an idle action on its own is not sufficient for decidability. Replacing RBMs with iRBMs does 
not always make the model checking problem decidable.

In this section we present the main idea underlying the undecidability proofs of model checking RAL from [2] and 
investigate the reasons for the (un)decidability. We show that the model checking problem for RAL, i.e., the logic with-
out any additional restrictions, remains undecidable over iRBMs (see Theorem 1 below). This result also holds for both 
the proponent-restricted fragment and the resource-flat fragment. For these fragments we also investigate the effect of the 
number of agents and resource types on the undecidability. The results of [2,7] depend on the availability of two resource 

3 In S1 the release operator is used to show the undecidability of model checking resource-bounded agents using memoryless strategies. As we focus on 
perfect-recall strategies in this paper, we do not need the extra expressivity provided by the release operator.
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types. Here we show that undecidability holds even if each agent has only a single resource type available. In this case, how-
ever, additional agents are required for undecidability; more precisely, one or two additional agents are required depending 
on the setting. We also show that in the case of prRAL over iRBMs, although the model checking problem remains unde-
cidable, the formula expressing an undecidable problem in the logic is more complex than the formula required for rfRAL. 
This suggests the idea of a syntactic restriction of prRAL which does not allow expression of the undecidable property. We 
end this section by motivating a new fragment of RAL, the positive proponent restricted fragment, pprRAL. This fragment is 
more expressive than that introduced in [7], in that the formula ϕ1 on the left-hand-side of ϕ1Uϕ2 is not constrained to be 
purely propositional. In Section 5 we show that the model checking problem for pprRAL is decidable over iRBMs.

For all the results below, the undecidability of the model checking problem is shown by a reduction of the halting 
problem for two-counter machines (also called Minsky machines, see [33] for details). A two-counter machine (TCM) is 
essentially a pushdown automaton with two stacks. The stacks are represented as two counters over natural numbers. Each 
of the counters (1 and 2) can be incremented, decremented (if non-zero), and tested for zero. In [33] it is shown that these 
machines are expressively equivalent to Turing machines. As a consequence the halting problem of two-counter machines 
is undecidable as well. For this paper we only need to consider TCMs with empty inputs; therefore, we only introduce this 
special type of TCMs.

Definition 2 (Empty-band two-counter machine (cf. [33]), empty-band). An empty band TCM A is given by (S, sinit, S f , �) where 
S is a finite set of states, sinit ∈ S is the initial state, S f ⊆ S is a set of final states, and � ⊆ (S × {0, 1}2) × (S × {−1, 0, 1}2)

is the transition relation such that if ((s, E1, E2), (s′, C1, C2)) ∈ � and Ei = 0 then Ci �= −1 for i = 1, 2 (to ensure that an 
empty counter is not decremented). In the following we sometimes use infix notation and write (s, E1, E2)�(s′, C1, C2)

instead of ((s, E1, E2), (s′, C1, C2)) ∈ �. We call ((s, E1, E2), (s′, C1, C2)) a transition if (s, E1, E2)�(s′, C1, C2) and denote a 
typical transition by τ .

As we focus on empty-band TCMs, we often simply say automaton or machine to refer to such a TCM. A TCM can be 
considered as a transition system equipped with two counters that influence the transitions. Each transition step of the 
automaton depends on whether the counters are zero or non-zero, and in each step the counters can be incremented or 
decremented. It is important to emphasise that a TCM cannot access the specific value of the counters. In the following 
let τ = ((s, E1, E2), (s′, C1, C2)) be a transition. Here, Ei = 1 (resp. = 0) represents that counter i is non-zero (resp. zero), 
and Ck = 1 (resp. = −1) denotes that counter i is incremented (resp. decremented) by 1. A value Ck = 0 indicates that 
counter k is left unchanged. The transition encodes that in state s the automaton can change its state to s′ provided that 
the first (resp. second) counter meets condition E1 (resp. E2). The value of counter k changes according to Ck for k = 1, 2. 
For example, the transition ((s, 1, 0), (s′, −1, 1)) is enabled if the current state is s, counter 1 is non-zero, and counter 2 is 
zero. If the transition is enabled and taken, the state changes to s′ , counter 1 is decremented and counter 2 is incremented 
by 1.

The general mode of operation is as for pushdown automata. In particular, a configuration is a triple (s, v1, v2) ∈ S ×N
2
0

describing the current state (s), the value of counter 1 (v1) and of counter 2 (v2). An A-computation ρ (or simply computa-
tion if the two-counter machine is clear from context) is a sequence of subsequent configurations resulting from transitions 
according to �, such that the first state is sinit . An accepting computation is a finite computation ρ = (si, vi

1, v
i
2)i=1,...,l where 

the last state sl ∈ S f is a final state. We use ρi = ((si, Ei
1, E

i
2), (si+1, C i

1, C
i
2)) to denote the transition that leads from the ith 

configuration (si, vi
1, v

i
2) to the (i + 1)th configuration (si+1, vi+1

1 , vi+1
2 ) for i < l. Note that we have that vi+1

k = vi
k + C i

k for 
k = 1, 2.

Finally, we say that a transition τ = ((s, E1, E2), (s′, C1, C2)) is enabled in a configuration (s, v1, v2) if the value vk of 
counter k satisfies condition Ek ∈ {0, 1} for k ∈ {1, 2} (with the obvious meaning of being zero or non-zero), i.e. vk > 0 iff 
Ek = 1. If an enabled transition τ is taken the automaton changes its control state from s to s′ , and counter i is updated by 
adding Ci ∈ {−1, 0, +1}. The automaton halts on empty input iff there is an accepting computation.4

4.1. Undecidability of rfRAL and prRAL with two resources types over iRBMs

In this section we essentially extend the undecidability results of [2] to iRBMs. We first give a generic construction of 
an iRBM MA

1 for a two-counter machine A which is used to show that model checking rfRAL and prRAL are undecidable 
over iRBMs (Theorems 1 and 2). The key is provided by the Simulation Lemma 1.

4.1.1. Encoding of two-counter machines
In [2] it was shown that model checking formulae of the form 〈 〈1〉 〉0̄

AgtF halt is undecidable over RBMs, where halt is an 
arbitrary proposition encoding that the TCM halts. In the following we show that this result carries over to iRBMs. Before we 
give the formal definitions and proof we present the basic idea underlying the reductions of [2] regarding RBMs.5 The key 

4 We only require that there is an accepting computation; in particular, there could be other (infinite) non-accepting computations of the automaton due 
to non-determinism.

5 No complete, formal proofs are given in [2], only proof sketches.
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idea is to encode the transition table of the automaton as an RBM, where the two counters are simulated by two resource 
types R1 and R2. We give a reduction for both one and two agents. First, we describe the variant with two agents. In this 
variant, agent 1 is the simulator and agent 2 is the spoiler. Essentially, the role of agent 1 is to select transitions τ of the 
automaton, while the role of agent 2 is to ensure that only enabled transitions are selected by agent 1. As an illustration, 
let us consider a single transition τ = ((s, E1, E2), (s′, C1, C2)). The model has different types of states, including automaton 
states S . In states s ∈ S the simulator agent 1 can execute an action E1 E2 followed by an action s′ C1C2

E1 E2
. Both actions together 

simulate the selection of τ . The first action, E1 E2, is used to select and to (partially) check whether a transition of the TCM 
is enabled. That is, if Ei = 1, agent 1 must have a resource of type Ri to execute the action. After executing E1 E2 the model 
enters a test state sE1 E2. The purpose of the test state is to check whether a transition with Ei = 0 was selected by agent 1
only if counter i was indeed zero. That is, the test state ensures that the simulation is sound. Note that, in general, nothing 
prevents agent 1 from executing such an action if it has resources available. The problem is that it is not possible to test 
for zero directly in the model.6 The workaround proposed in [2] is to use the spoiler agent 2 to encode the “zero test”. In 
a test state sE1 E2, agent 2 must not be able to reach the fail state q f . Reaching the fail state is only possible if resources 
are available in cases where there should not be any. This is encoded in the model by test actions testi with i ∈ {1, 2}. For 
example, if counter 1 should be empty, E1 = 0, the action test1 can only be executed if resources of type 1 are available. 
That is, the executability of the action indicates a flawed simulation. To work correctly, this requires that agent 2 correctly 
mirrors agent 1’s resource balance, i.e. agent 2 also simulates the counter values. This is achieved by essentially making 
the model turn-based, in the sense that agent 2 frequently has no alternatives: once agent 1 has executed an action s′ C1C2

E1 E2

to update the counter values, an intermediate state s′C1C2 is introduced in which agent 2 has a single choice with the 
same effect on its resource balance as agent 1’s previous action.7 Based on this idea, it is shown in [2] (using the finitary 
semantics) that the TCM A halts on the empty input if, and only if, the formula 〈 〈1〉 〉0̄

{1,2}F halt holds in the corresponding 
model. The state corresponding to the automaton’s accepting state is labelled halt.

In extending the reduction to iRBMs, the main difficulty is correctly mirroring agent 1’s resources by agent 2 in the 
presence of idle actions. It is no longer possible to give agent 2 only a single action to execute; an action with no costs 
must also be available. We extend the construction outlined above accordingly. The key idea is that executing the idle action 
does not help agent 2 spoil the execution. The next definition formalises an appropriate encoding to work over iRBMs.

Definition 3 (MA
1 ). Let A = (S, sinit, S f , �) be an empty-band TCM. From A we construct the iRBM MA

1 = ({1, 2}, Q , �, π,

Act, d, o, {R1, R2}, t) with

1. Q = S ∪ Q 1 ∪ Q 2 ∪ {q f , qh, q�} where Q 1 = {sE1 E2 | s ∈ S, E1, E2 ∈ {0, 1}} and Q 2 = {sC1C2 | s ∈ S, C1, C2 ∈ {−1, 0, 1}}. 
State q f (resp. qh and q�) is called a fail state (resp. auxiliary halting state and loop state).

2. The set Act of actions is defined as follows. For each transition ((s, E1, E2), (s′, C1, C2)) of A the set contains actions 
E1 E2, s′ C1C2

E1 E2
, and s′C1C2. Additionally, there are the idle action idle and test actions testi for i ∈ {1, 2}.

3. The action availability is defined according to �. For agent 1 we have:

E1 E2 ∈ d1(s) iff there is a transition ((s, E1, E2), (s′, C1, C2)) ∈ �

idle ∈ d1(q) for all q ∈ Q

s′ C1C2
E1 E2

∈ d1(sE1 E2) iff ((s, E1, E2), (s′, C1, C2)) ∈ �

and for agent 2:

idle ∈ d2(q) for all q ∈ Q

s′C1C2 ∈ d2(s′C1C2) for all s′C1C2 ∈ Q 2

testi ∈ d2(sE1 E2) iff Ei = 0 with i ∈ {1,2}
4. The set of propositions is defined by � = {halt, fail}. All states in {qh} ∪ S f are labelled with halt and q f is labelled with 

fail.
5. The transition function is defined as follows:

o(s, (E1 E2, idle)) = sE1 E2

o(s, (idle, idle)) = o(sE1 E2, (idle, idle)) = q�

o(q�, (idle, idle)) = q�

6 Testing for zero is a delicate property, the satisfaction of which seems crucial for the undecidability of other formalisms, such as Petri nets [34].
7 We note that we need the underscore in order to make the two types of states syntactically different. Otherwise, in case C1 = E1, C2 = E2 and s = s′ , 

we could not have two ‘copies’ of a state.
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Fig. 2. The left figure schematically shows an abstraction of the encoding of the automaton MA
1 for � = {((s, E1, E2), (s′, C1, C2)), ((s, E1, E2),

(s′′, C1, C2)), ((s′, E1, E2), (s′′, C1, C2))}. The right figure shows an excerpt of the encoding of a transition (s, E1, E2)�(s′, C1, C2) using two resource types 
and two agents.

o(sE1 E2, (s′ C1C2
E1 E2

, idle)) = s′C1C2

o(sE1 E2, (�, testi)) = o(q f , (idle, idle)) = q f

o(s′C1C2, (idle, s′C1C2)) = s′

o(s′C1C2, (idle, idle)) = o(qh, (idle, idle)) = qh

where � represents any action available to the respective agent in that state.
6. The actions’ resource consumption/production is defined by function t where i, r ∈ {1, 2}:

t(E1 E2, Rr) = −Er

t(idle, Rr) = 0

t(sC1C2
E1 E2

, Rr) = Cr + Er

t(sC1C2, Rr) = Cr

t(testi, Rr) =
{

−1 if i = r

0 else

Let us consider a TCM A = (S, sinit, S f , �). The construction of the model MA
1 is sketched in Fig. 2 (left), and the 

encoding of a single transition τ = ((s, E1, E2), (s′, C1, C2)) is illustrated in Fig. 2 (right). As explained above, the action 
E1 E2 consumes −Er resources of Rr for r = 1, 2. This simulates that only enabled transitions τ can be taken. If Er = 1 then 
the action E1 E2 can only be taken if resources Rr ≥ 1. Actions of type sC1C2

E1 E2 consume/produce Cr + Er units of resource Rr , 
r = 1, 2. The component Cr simulates the decrement and increment of counter r where Er corrects the possible (temporary) 
subtraction from the previous action E1 E2. The necessary information to select the correct action is stored in the state 
sE1 E2. Clearly, actions can only be performed if sufficient resources are available. The difficulty is to ensure that actions 
E1 E2 with some Er = 0 are only performed if the counter r is actually 0; that is, if no resources of type Rr are available. For 
this purpose, test actions testr that cost −1 units of resource Rr for r ∈ {1, 2}, are introduced. Such an action testr can only 
be performed in states sE1 E2 if Er = 0, and it always leads to the fail state q f . Now, in a state sE1 E2 with some element 
equal to 0, say E1 = 0, E2 = 1, (representing that counter 1 should be zero and 2 should be non-zero) the action test1 can 
be used to verify whether the currently available resources model the counter correctly: if q f is reachable, resources of type 
R1 are available, although this should not be the case according to E1.

4.1.2. Properties of the encoding: the simulation lemma
In the following, we state properties of the encoding, and prove a simulation lemma which relates runs of the two-

counter machine with paths in the model. First, we make a straightforward observation:

Observation 3. The model MA
1 is an iRBM.

We define the concept of a computation pre-encoding. This is a finite path in the model which will later be shown to 
encode a partial computation of the automaton.

Definition 4 (Computation pre-encoding of MA
1 ). Let A be an empty-band TCM. A finite resource-extended path λ ∈ (Q ×

En)+ in MA is called an A-computation pre-encoding of MA if it satisfies the following properties:
1 1
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1. η(1, Rr) = η(2, Rr) where λ[0] = (q, η) for r ∈ {1, 2}; and
2. λ|Q = (si(si Ei

1 Ei
2)(si+1C i

1C i
2))i=1,...,ksk+1 or λ|Q = s1.

An A-computation pre-encoding of MA
1 is called accepting if its final state sk+1 is an accepting state of the TCM, sk+1 ∈ S f , 

or if λ|Q = s1 ∈ S f . In the following we shall often omit “of MA
1 ”.

The first requirement states that the endowments of both agents must be the same in the initial state. The second 
requirement expresses that a fail, auxiliary halting, or loop state must never be visited, and the path ends in a state that 
is also a state of A; moreover, it specifies the order in which states in the model are visited. The latter is inherent in the 
construction of the model. The next proposition states that, on a computation pre-encoding, agent 2 correctly mirrors the 
resources of agent 1 whenever a state in the model, representing a state of the TCM, is visited.

Proposition 1. Let A be an empty-band TCM and λ = (qi, ηi)i=1,...,3(k−1)+1 be an A-computation pre-encoding.

(a) We have that η3(k−1)+1(1, Rr) = η3(k−1)+1(2, Rr) for r = 1, 2.
(b) If λ ◦ (sE1 E2, η)(s′C1C2, η′) is a partial resource-extended path, then λ ◦ (sE1 E2, η)(s′C1C2, η′)(s′, η′′) is a partial resource-

extended path with a uniquely defined endowment η′′.
(c) If λ[i] = (qi, ηi) = (sE1 E2, ηi) with Er = 0, then (ηi(1, Rr) = 0 if, and only if, ηi(2, Rr) = 0), where r ∈ {1, 2}.

The proof is given in Appendix A.1. Part (a) expresses that the resource endowments of agents 1 and 2 are identical 
whenever a state q corresponding to an automaton state s is reached. Part (b) says that agent 2 always has enough resources 
in states of type s′C1C2 to mirror the action executed by agent 1 one step before. Finally, in (c) the crucial observation is 
made that in the test states sE1 E2 with Er = 0 for r ∈ {1, 2}, both agents both have either no resources of Rr available, or 
they both have resources of Rr available. This ensures that the test actions are correctly executed.

The next definition relates a computation pre-encoding to the computations of the automaton it simulates. This means 
that essentially the same automaton states are visited, and the resources of agent 1 correctly simulate the counter values.

Definition 5 (Simulation, A-computation encoding). We say that the A-computation pre-encoding λ = (qi, ηi)i=1,...,3(k−1)+1, 
k ∈N, simulates the computation ρ iff the following holds:

1. ρ has length k;
2. for every i ∈ {1, . . . , k} if ρ[i] = (s, v1, v2) then λ[3(i − 1) + 1] = (s, η) with η(1, Rr) = vr for r ∈ {1, 2}; and
3. for any configuration λ[i] = (sE1 E2, η) on λ with Er = 0, r ∈ {1, 2}, it holds that η(1, Rr) = 0.

An A-computation pre-encoding is called an A-computation encoding in MA
1 if it simulates some computation of A. Conse-

quently, an A-computation encoding in MA
1 is called accepting if it simulates an accepting computation of A.

The following lemma is the key step in our reduction. It specifies that the computation pre-encodings do exactly char-
acterise the computations of the automaton. In other words, the behaviour of the automaton is exactly captured by the 
computation pre-encoding in the constructed iRBM. This lemma concludes the construction of MA

1 and the analysis of its 
structural properties.

Lemma 1 (Simulation Lemma for MA
1 ). There is a bijection f A between computations of A and A-computation encodings of MA

1
such that f A(ρ) simulates the computation ρ . In particular, if ρ is an accepting computation then f A(ρ) is also accepting.

The proof is given in Appendix A.1.

4.1.3. Resource-flat fragment with two resource types
We first show that proponent restrictedness is essential for decidability over iRBMs, by showing that resource flatness is 

not sufficient, and rfRAL is undecidable over iRBMs. In [2] it was shown that model checking formulae of type 〈 〈1〉 〉0̄
AgtF halt is 

undecidable over RBMs. The decidability of this fragment was open over iRBMs. In Theorem 1, we show that undecidability 
continues to hold. The proof adapts the approach of [2] to work over iRBMs.

As in [2] we show that the empty-band TCM A halts iff MA
1 , qinit, ̄0 |= 〈 〈1〉 〉0̄

{1,2}F halt. By Lemma 1 this is equivalent to 

showing that there is an accepting A-computation encoding iff MA
1 , qinit, ̄0 |= 〈 〈1〉 〉0̄

{1,2}F halt.
Consider the encoding of (s, E1, E2)�(s′, C1, C2) shown in Fig. 2. First, we observe that executing an idle action is not 

helpful for agent 1 in states s and sE1 E2; neither is it helpful for agent 2 to idle in a state s′C1C2. If agent 1 executes idle 
in states s or sE1 E2, this would yield the state q f or q� which cannot help to make the formula true; on the contrary, if 
the formula is not already true, these states make it false. Similarly, if agent 2 executes idle in s′C1C2, the formula would 
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be true when state qh is reached. As we are looking for a winning strategy for agent 1 against all strategies of agent 2, we 
can neglect the cases where either agent executes an idle action in the aforementioned states. As a result, we only need to 
consider paths that have the structure of A-computation pre-encodings. The second agent is needed to ensure that agent 
1 chooses actions that yield an A-computation encoding, i.e. that the selection of actions simulates a possible behaviour of 
the automaton. By construction, agent 2 only has a choice in states sE1 E2 and s′C1C2. In the former state the agent can 
execute a test action if sufficient resources are available. In the latter, it could idle—as discussed above, an action the agent 
should not execute. As a consequence, in states of type s′C1C2, agent 2 should essentially only perform the action s′C1C2
ensuring that the agent’s resources mirror agent 1’s resources (cf. Proposition 1). This essentially ensures condition 3 of 
Definition 5 (simulation). Formally, we have:

Lemma 2. The empty-band TCM A halts iff MA
1 , sinit, ̄0 |= 〈 〈1〉 〉0̄

{1,2}F halt.

We briefly sketch the main idea of the proof below; the full proof is given in Appendix A.1:

• Suppose that A halts. Then, agent 1 simulates the transitions of the machine’s accepting run. Due to the simulation, 
agent 2 will never be able to enforce the fail state q f . Moreover, either agent 2’s resources correctly mirror agent 1’s 
resources, or agent 2 performs the idle action. In both cases, either an accepting state or the auxiliary halting state qh , 
both labelled halt, are reached. The formula is true.

• Let the formula be true. Agent 1 must have a strategy that guarantees reaching a state labelled halt against all strategies 
of agent 2, including agent 2’s strategy in which agent 2 never performs the idle action. This strategy of agent 2
correctly mirrors agent 1’s resources and ensures that agent 1’s strategy only selects enabled transitions. Thus, the 
strategy of agent 1 yields a A-computation encoding.

The previous lemma immediately yields the following theorem which concludes our study of rfRAL with two resource 
types.

Theorem 1. Model checking rfRAL over the class of iRBMs is undecidable, even for two agents and two resource types.

4.1.4. The proponent restricted fragment with two resource types
Theorem 1 shows that the restriction of resource-flatness is not enough to obtain a decidable model checking property. In 

this section, we consider the proponent-restricted fragment. We show that proponent-restrictedness on its own is also not 
sufficient for decidability, and prRAL is undecidable over iRBMs. We do this by adapting the undecidability proof of [2] for 
prRAL to work over iRBMs. This is a negative result. However, in contrast to Theorem 1, the formula used in the reduction 
is more complex. This leaves room for restrictions on the temporal structure of prRAL. Indeed, this is the motivation for the 
decidable fragment of prRAL that we introduce in Section 4.3.

The proof of the undecidability result for prRAL over RBMs of [2] essentially follows an encoding similar to the one 
shown in Fig. 3. However, in contrast to the previous encoding, the second agent is removed, and agent 1 itself is used 
to perform the zero test. This requires a slightly more sophisticated formula. First, we show a reduction with respect to 
our original, two-player model MA

1 : the automaton A halts if, and only if, MA
1 , qinit, ̄0 |= 〈 〈1,2〉 〉0̄((¬〈 〈1,2〉 〉↓X fail)U halt). 

The main idea is that in test state sE1 E2, agents {1, 2} must not be able to reach the fail state q f , which is expressed by 
¬〈 〈{1,2}〉 〉↓X fail. The next lemma follows essentially as a Corollary of [2], by adding idle loops to the construction. However, 
for uniformity, we base the proof on the model MA

1 .

Lemma 3. The empty-band TCM A halts iff MA
1 , qinit, ̄0 |= 〈 〈1,2〉 〉0̄((¬〈 〈1,2〉 〉↓X fail)U halt).

Proof. The proof is analogous to the one given for Lemma 2. For the direction “⇒” it is sufficient to observe that the only 
states from which the fail state q f can be reached within one step are of the form sE1 E2 with Er = 0 for r ∈ {1, 2}. Thus, 
the strategy profile (s1, s2), where s1 is the strategy of agent 1 as defined in Lemma 2 and s2 is an arbitrary strategy for 
agent 2, witnesses the truth of the formula. The other direction is done analogously to Lemma 2. �

In the formula used in the reduction of Lemma 3, 〈 〈1,2〉 〉0̄((¬〈 〈1,2〉 〉↓X fail)U halt), the two agents 1 and 2 always act as a 
team; there is no opponent. Thus, the two agents can be merged into a single agent. The next result makes this observation 
precise.

Theorem 2. Model checking prRAL over the class of iRBMs is undecidable, even in the case of a single agent and two resource types.

Proof. We modify the model MA
1 = ({1, 2}, Q , �, π, Act, d, o, {R1, R2}, t) to a model M̂A

1 = ({1}, Q \{qh}, �, ̂π, ̂Act, ̂d, ̂o,

{R1, R2}, ̂t). We remove the auxiliary halting state as it must not be reached by the proponent agent 1. Essentially, we 
merge the two agents into one. The encoding of a single automaton transition is shown in Fig. 3. We define ̂d1(q) as d1(q)
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Fig. 3. Excerpt of model M̂A
1 : encoding of a transition (s, E1, E2)�(s′, C1, C2) using two resource types and one agent.

where we additionally require that testi ∈ d̂1(sE1 E2) iff Ei = 0; agent 1 can now make all decisions. The action set Âct
equals Act but all actions of type sC1C2 are removed. The transition function ̂o is obtained from o:

ô(s, E1 E2) = sE1 E2

ô(s, idle) = ô(sE1 E2, idle) = q�

ô(q�, idle) = q�

ô(sE1 E2, s′ C1C2
E1 E2

) = sC1C2

ô(sE1 E2, testi) = ô(q f , idle) = q f

ô(s′C1C2, idle) = s′

The cost function ̂t and the labelling function π̂ are defined as before restricted to the new action set.
Now, it is easy to see that each resource-extended path λ = (qi, ηi)i∈N in MA

1 that does not visit state qh corresponds to 
a path λ = (qi, ̂ηi)i∈N in M̂A

1 with η̂i(1, Rr) = ηi(1, Rr). By Proposition 1(c), the zero-test in the test states can equivalently 
be defined with respect to agent 1’s resource endowment. It is immediate that MA

1 , qinit, ̄0 |= 〈 〈1,2〉 〉0̄((¬〈 〈1,2〉 〉↓X fail)U halt)

if, and only if, M̂A
1 , qinit, ̄0 |= 〈 〈1〉 〉0̄((¬〈 〈1〉 〉↓X fail)U halt). �

Remark 2. We note that we can further simplify model M̂A
1 . For example, states of type s′C1C2 are not needed. Keeping 

them, however, allows us to reuse the previous notation and thus simplifies the presentation.

4.2. Undecidability of prRAL and rfRAL with one resource type over iRBMs

The reductions presented in the previous section use two resource types to simulate the two counters of the two-counter 
machine. In this section we show that the model checking problem for prRAL and rfRAL remain undecidable even if each 
agent has only one resource type available. This shows that proponent restriction and resource flatness are essential even 
with one resource type. Settings restricted to a single resource type are an important special case, as having only one 
resource type available might be expected to make model checking less complex. For example, with one resource type, the 
complexity of RB±ATL goes from EXPSPACE-hard to PSPACE-complete [8,9]. The reductions in the case of one resource type 
are more complex. Specifically, the number of agents doubles: instead of one agent in the proponent-restricted setting, we 
need two; and instead of two agents in the resource-flat setting, we need four.

4.2.1. Encoding two-counter machines
The encoding of the TCM is very similar to the encoding presented in Section 4.1.1. The key difference is that we can 

no longer use a single action to update both resource types at the same time. The actions must be split into two. Instead 
of an action E1 E2, we introduce two actions E1 E2 and E1 E2, where the first and second action are controlled by the first 
and second agent, respectively, and change the agent’s single resource type according to E1 and E2, respectively. Similarly, 
actions of type sE1 E2

C1C2
are split into s

E1 E2
C1C2

and s
E1 E2
C1C2

. The underscore indicates which parts of the action should be used to 
update the resources of the agent executing the action.

The technical presentation requires a little more notation. The decomposition ensures that the agents coordinate their 
actions so that the action tuples consisting of the actions of the first and second agent have a counterpart in the TCM. This 
is best illustrated by an example. Suppose the automaton contains the transitions ((s, 0, 1), (s′, 1, 1)) and ((s, 1, 0), (s′, 1, 1)), 
and that these are the only two transitions which should be enabled in state s. In the new encoding, agent 1 would have 
the actions 01, 10, and idle in its repertoire at state s. Similarly, agent 2 has actions 01, 10, and idle available at state s. 
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Fig. 4. Excerpt of model MA
2 . Encoding of a transition (s, E1, E2)�(s′, C1, C2) using only one resource type and four agents. In the figure, we use i to refer 

to the idle action idle.

As both agents are autonomous decision makers they are free to choose actions independently. Hence, the action profile 
(01, 10) may result from their action selection. Clearly, this is an undesirable action tuple, as it does not correspond to 
any transition of the automaton. We need to ensure that such action profiles never yield a behaviour which encodes an 
accepting run of the automaton. Therefore, the model is constructed in such a way that invalid action profiles result in the 
loop state q� .

With this change, the other parts of the previous encoding can be used with only minor modifications. Agents {1, 2}
are used to simulate the behaviour of the automaton, and agents {3, 4} play the role of the spoiler agents who ensure that 
the simulation is sound. Thus, the coalition {3, 4} is used to encode the zero-test. This requires that agent 3 mirrors the 
resources of agent 1, and agent 4 the resources of agent 2. The new encoding of a transition is illustrated in Fig. 4, and the 
formal definition of the model is given in Appendix A.2 (Definition 7).

4.2.2. Properties of the encoding: the simulation lemma
Analogously to Section 4.1.2, we present a simulation lemma. We also need to introduce computation pre-encodings 

etc. with respect to MA
2 . For the sake of readability, we mostly refrain from giving formal definitions, and focus on the 

key modifications. An A-computation pre-encoding of MA
2 is defined as for MA

1 , but the initial condition is changed to 
η(a, R) = η(b, R) for agents (a, b) ∈ {(1, 3), (2, 4)} where R refers to the single resource type. (In the following we use a and 
b to denote the agents, where b simulates the resources of a.) That is, the initial endowment for agents 1 and 3, as well as 
for agents 2 and 4 must be identical. With this notion we can also prove basic properties analogously to Proposition 1. The 
new version of Proposition 1 reads as follows:

(a) We have that η3(k−1)+1(a, R) = η3(k−1)+1(b, R) for (a, b) ∈ {(1, 3), (2, 4)}.
(b) If λ ◦ (sE1 E2, η)(s′C1C2, η′) is a resource-extended path, then λ ◦ (sE1 E2, η)(s′C1C2, η′)(s′, η′′) is a resource-extended 

path with a uniquely defined endowment η′′ .
(c) If λ[i] = (qi, ηi) = (sE1 E2, ηi) with Ea = 0, then (ηi(a, R) = 0 if and only if ηi(b, R) = 0), where (a, b) ∈ {(1, 3), (2, 4)}.

(b) remains unchanged, and expresses that agents 3 and 4 correctly mirror the resources of agents 1 and 2, respectively. 
We introduce the revised notion of simulation. We say that the A-computation pre-encoding λ = (qi, ηi)i∈{1,...,3(k−1)+1} of 
MA

2 , k ∈N, simulates the A-computation ρ (wrt. MA
2 ) if the following holds:

1. ρ has length k;
2. for every i ∈ {1, . . . , k} if ρ[i] = (s, v1, v2) then λ[3(i − 1) + 1] = (s, η) with η(1, R) = v1 and η(2, R) = v2; and
3. for any configuration λ[i] = (sE1 E2, η) on λ with Er = 0, r ∈ {1, 2}, it holds that η(r, R) = 0.

Note that counters now refer to the unique resource type of different agents, rather than to different resource types of a 
single agent.

Analogously to Lemma 1 we can prove the following adapted simulation lemma.

Lemma 4 (Simulation Lemma for MA
2 ). There is a bijection f A between computations of A and A-computation encodings of MA

2
such that f A(ρ) simulates the computation ρ . In particular, if ρ is an accepting computation then f A(ρ) is also accepting.

4.2.3. Resource-flat fragment with one resource type
In this section we prove undecidability of rfRAL with only one resource type. We proceed analogously to Section 4.1.3. 

We show that the empty-band TCM A halts if, and only if, MA
2 , sinit, ̄0 |= 〈 〈1,2〉 〉0̄

{1,2,3,4}F halt. Again, we observe that for any 
encoding of a transition (s, E1, E2)�(s′, C1, C2) shown in Fig. 4, agents 1 and 2 (resp. 3 and 4) have no incentive to idle in 
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Fig. 5. Excerpt of model M̂A
2 . Encoding of a transition (s, E1, E2)�(s′, C1, C2) using only one resource type and two agents. Again, we denote the idle 

action idle by i.

states s and sE1 E2 (resp. in state s′C1C2). Instead of looking for a winning strategy for {1} we look for a winning strategy 
for {1, 2}. The key idea is that the coalition behaves in such a way that their combined action corresponds to the action 
selection of {1} in Section 4.1.3. Given the reformulation of properties above, we can make the following observations:

• If A halts, then coalition {1, 2} simulates the transitions of the machine’s accepting run. Due to the simulation, coalition 
{3, 4} will never be able to enforce the fail state q f . Moreover, either agent b’s resources correctly mirror agent a’s 
resources, or agent b performs the idle action for (a, b) ∈ {(1, 3), (2, 4)}. In both cases, either an accepting state or the 
auxiliary halting state qh , both labelled halt, are reached. The formula is true.

• Let the formula be true. Coalition {1, 2} must have a strategy that guarantees reaching a state labelled halt against all 
strategies of {3, 4}, including the collective strategy of {3, 4} in which an idle action is never performed in states of type 
s′C1C2. This strategy of agent b correctly mirrors agent a’s resources and ensures that agent a’s strategy only selects 
enabled transitions, (a, b) ∈ {(1, 3), (2, 4)}. Thus, the strategy of {1, 2} yields an A-computation encoding. By Simulation 
Lemma 4 the TCM has an accepting run and halts.

Formally, we capture the previous discussion in the following Lemma and Theorem.

Lemma 5. The empty-band TCM A halts iff MA
2 , sinit, ̄0 |= 〈 〈1,2〉 〉0̄

{1,2,3,4}F halt.

Theorem 3. Model checking rfRAL over the class of iRBMs is undecidable, even in the case of a single resource type and four agents.

The proofs of Lemma 5 and Theorem 3 are analogous to those of Lemma 2 and Theorem 1, respectively.

4.2.4. The proponent restricted fragment with one resource type
Finally, we consider the proponent-restricted fragment. Again, the line of argument is analogous to the one followed in 

Section 4.1.4, but there is one caveat when it comes to merging the agents. We first state the analogue of Lemma 3.

Lemma 6. The empty-band TCM A halts iff MA
2 , qinit, ̄0 |= 〈 〈1,2,3,4〉 〉0̄((¬〈 〈1,2,3,4〉 〉↓X fail)U halt).

Next, we observe that the agents {1, 2, 3, 4} act as a team. Thus, we can consider their decision making as the decision 
making of a single “merged” agent. However, in contrast to the setting of Section 4.1.4, we cannot explicitly model this by a 
single agent as there is only one resource type. Thus, we merge agents {1, 3} and agents {2, 4} into two distinct agents. The 
resulting model M̂A

2 is illustrated in Fig. 5.

Theorem 4. Model checking prRAL over the class of iRBMs is undecidable, even in the case of a single resource type and two agents.

The proof is given in Appendix A.2.

4.3. The positive proponent-restricted fragment of RAL

Following the observation made in the previous sections about the proponent-restricted variants of RAL (cf. Theorems 2
and 4) we define a proponent-restricted but not resource-flat fragment of RAL, pprRAL, that has a decidable model checking 
property over iRBMs. We first define the positive fragment of RAL as the set of all RAL-formulae where no cooperation 
modality is under the scope of a negation symbol.
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Definition 6 (The fragment pprRAL). The logic pprRAL is defined as the proponent-restricted and positive fragment of RAL.8

As noted in the introduction, the pprRAL-fragment allows us to express properties of coalitions of agents which re-
consider their strategies without being re-equipped with fresh resources. For example, we can formalise the property “given 
their initial battery charge, rescue robots A can safely get to a position from which they can perform rescue while in visual 
contact with the base” as: 〈 〈A〉 〉ηinit (safe U(〈 〈A〉 〉↓(visual U rescue))). Intuitively, this reflects the constraint that the robots can-
not recharge their batteries after reaching the position where they can perform rescue while in visual contact with the base. 
This is expressible in pprRAL but not in rfRAL. Another example is the formula 〈 〈1,2〉 〉ηinit F(rob ∧ 〈 〈1〉 〉↓F escape), expressing 
that the coalition {1, 2} can cooperate to eventually rob a bank, following which agent 1 has a strategy to escape on its own 
using only its remaining resources.

Before we show the decidability of pprRAL over iRBMs in the next section, we make the following observation which 
follows from [2, Theorem 6]:

Observation 4. Model checking pprRAL over RBMs is undecidable.

To give a flavour of the basic idea of the undecidability proof, let us consider Fig. 2. We have to modify the construction 
in such a way that, in test states sE1 E2, the opponent can always execute a test action corresponding to a counter that 
should be zero, after which a new state is reached in which the proponent has to execute a specific action. In a sense the 
opponent can challenge the proponent to execute this specific action. Now, there are two options. First, the proponent has 
not sufficient resources to execute the action, which means that the counter is simulated correctly. In that case the history 
leading to the current state is disregarded as it cannot be extended to a resource-extended path (recall that such paths 
have to be infinite). Second, the proponent can execute the action. This would result in a new fail state labelled with a 
specific proposition, say error, indicating that the reduction is flawed. Then, the simulation is continued by connecting the 
fail state with the state s′C1C2 which would have been reached if the opponent had not executed the test action. Given 
this modification, we can show formally that M, qinit, ̄0 |= 〈 〈1〉 〉0̄(¬error)U halt iff the automaton A halts on the empty input, 
where M is a modified version of MA

2 essentially along the lines sketched above (in particular, all idle actions are removed).
It is important to note that in the presence of idle actions, this reduction no longer works, as the proponent always has a 

choice. Even in the case where the proponent has no resources left, the computation of the system can always be extended 
to be infinite, either by visiting the fail state, or by looping in some state. As a consequence, a halting state may never be 
reached. This implies that the opponent has too much power, and can always spoil the simulation by performing a test 
action in cases where the simulation is sound and no resources are available. That there is no way to save the reduction is 
shown by the decidability result we present in the next section.

5. Model-checking pprRAL over iRBMs

In this section we prove that the model checking problem for the fragment pprRAL over iRBMs is decidable. We first 
present the model checking algorithm for pprRAL over iRBMs, and then prove termination and correctness of the algorithm 
in Lemmas 7 and 8, respectively.

5.1. Model checking algorithm for pprRAL

The model checking algorithm for pprRAL over iRBMs takes as input a model M, formula φ, and initial endowment η, 
and labels the set of states [φ]η

M
, where [φ]η

M
= {q | M, q, η |= φ} is the set of states satisfying φ (see Algorithm 1).9

Algorithm 1 Labelling φ.
1: procedure label(M, φ, η)
2: for φ′ ∈ Sub(φ) do
3: [φ′]η

M
← atl-label(M, φ′)

4: [φ]η
M

← { q | q ∈ Q ∧ strategy(node0(q, η, η, prop(φ)), φ)}

Given φ, we produce the set of subformulae of φ, Sub(φ), in the usual way, except that 〈 〈A〉 〉↓ and 〈 〈A〉 〉ζ modalities are 
replaced by standard ATL modalities 〈 〈A〉 〉. Sub(φ) is ordered in increasing order of complexity. For a formula φ′ ∈ Sub(φ), 
we will write s |= φ′ to indicate that state s has been labelled by φ′ . Note that if a state s is not annotated with the standard 

8 A more restricted version of pprRAL was introduced in [7], where in addition the formula ϕ1 on the left-hand-side of ϕ1Uϕ2 is constrained to be 
propositional.

9 The model checking algorithm for pprRAL is a slightly modified version of the algorithm given in [7]. In particular, Algorithm 4 incorporates an extra 
call to strategy to allow arbitrary positive formulae on the left of U. Other changes simply clarify the presentation and/or correct minor bugs in the 
algorithm given in [7].
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ATL modality 〈 〈A〉 〉, then it cannot satisfy 〈 〈A〉 〉↓ or 〈 〈A〉 〉ζ . Algorithm 1 simply labels states with the subformulae of φ using 
the standard ATL labelling algorithm [32] (lines 2–3). It then calls the function strategy to label states with φ (line 4). prop
is a function that returns either the proponents A ⊆ Agt if φ is of the form 〈 〈A〉 〉∗Xψ, 〈 〈A〉 〉∗ψ1Uψ2, 〈 〈A〉 〉∗Gψ where ∗ is 
either ↓ or an endowment, or Agt otherwise. The function node0 initialises the root node for the function strategy and is 
explained below.10

Algorithm 2 Strategy.
1: function strategy(n, φ)
2: case φ = p ∈ �

3: return s(n) |= φ

4: case φ = ¬p where p ∈ �

5: return s(n) �|= φ

6: case φ = ψ1 ∧ ψ2

7: return strategy(node0(s(n), e(n), v(n), c(n)), ψ1) ∧ strategy(node0(s(n), e(n), v(n), c(n)), ψ2)

8: case φ = ψ1 ∨ ψ2

9: return strategy(node0(s(n), e(n), v(n), c(n)), ψ1) ∨ strategy(node0(s(n), e(n), v(n), c(n)), ψ2)

10: case φ = 〈 〈A〉 〉↓Xψ

11: return x-strategy(node0(s(n), e(n), v(n), A), φ)

12: case φ = 〈 〈A〉 〉ζ Xψ

13: return x-strategy(node0(s(n), ζ, ζ, A), φ)

14: case φ = 〈 〈A〉 〉↓ψ1Uψ2

15: return u-strategy(node0(s(n), e(n), v(n), A), φ)

16: case φ = 〈 〈A〉 〉ζ ψ1Uψ2

17: return u-strategy(node0(s(n), ζ, ζ, A), φ)

18: case φ = 〈 〈A〉 〉↓Gψ

19: return g-strategy(node0(s(n), e(n), v(n), A), φ)

20: case φ = 〈 〈A〉 〉ζ Gψ

21: return g-strategy(node0(s(n), ζ, ζ, A), φ)

The function strategy is shown in Algorithm 2 and proceeds by depth-first and-or search. That is, we examine each 
path in the search space in turn, as in standard depth-first search, but treat nodes corresponding to a particular choice of 
action by A as and-nodes, i.e., all branches corresponding to this choice must return true for the choice to be part of a 
successful strategy. The function strategy processes each coalition modality in turn, starting from the outermost modality. 
The logical connectives are standard, and simply call strategy on the subformulae. Each temporal operator is handled by a 
separate function: x-strategy for Xψ , u-strategy for ψ1Uψ2, and g-strategy for Gψ , and are explained below. We record 
information about the state of the search in a search tree of nodes. A node is a structure which consists of a state of M, 
the resources available to all the agents in that state, and a finite path of nodes leading to this node from the root node. 
Edges in the search tree correspond to joint actions by all agents. Note that the resources available to the agents in a 
state on a path constrain the edges from the corresponding node to be those action profiles αA where for all proponent 
agents a, (cons(αa, r))r∈Res is less than or equal to the available resources of agent a. We compare vectors of resources in 
the usual way; for example, ζa ≥ (cons(αa, r))r∈Res stands for ζa(r) ≥ cons(αa, r) for all resources r. For an action profile αA
of A ⊆ Agt, we write cons(α) to refer to the tuple ((cons(αa))r∈Res)a∈A . For each node n in the tree, we have a function 
s(n) which returns its state, p(n) which returns the sequence of nodes on the path to n, e(n) which returns an endowment 
specifying the resource availability for all agents as a result of following p(n), v(n) which returns the resources potentially 
available to the agents as a result of traversing cycles on p(n) additional times,11 and c(n) which returns the current set of 
proponents. The function node0(s, η, η′, A) returns the root node, i.e., a node n0 such that s(n0) = s, p(n0) = [ ] (empty list), 
e(n0) = η, v(n0) = η′ , and c(n0) = A ⊆ Agt is the current set of proponents. The function node(n, s′, α, A) returns a node n′
where s(n′) = s′ , p(n′) = [p(n) · n], c(n′) = A = c(n),

ea(n
′) =

{
ea(n) if a /∈ A
ea(n)+prod(α)−cons(α) if a ∈ A

and

va(n
′) =

{
va(n) if a /∈ A
va(n)+prod(α)−cons(α) if a ∈ A

where vectors are added and subtracted as usual unless their components are not integers. For technical reasons, we in-
troduce an extra value for an agent’s resource endowment, arb, which denotes an arbitrary finite value; for any m ∈ Z, 
m < arb. arb cannot be incremented or decremented: arb + m = arb and arb − m = arb. Above, e(n)(a, r) is used to keep 
track of the ‘real’ cost of the loops and does not contain arb values, while v(n)(a, r) = arb indicates that the path p(n)

10 Note that we do not label states with subformulae of φ involving 〈 〈A〉 〉↓ or 〈 〈A〉 〉ζ modalities as in [6].
11 A cycle on p(n) is a subsequence of p(n) with start and end nodes sharing the same state.
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contains a productive loop, which can be traversed multiple times to generate an arbitrary finite amount of resource r for 
agent a. Intuitively, arb represents an arbitrary finite number; hence, having arb resources allows the agent to execute any 
action as well as any finite number of loop traversals, but does not allow the agent to traverse a loop infinitely many times.

Algorithm 3 X-strategy (both types of modalities).
1: function x-strategy(n, 〈 〈A〉 〉∗Xψ )
2: if s(n) �|= atl(〈 〈A〉 〉∗Xψ) then
3: return false

4: Act A ← {α′ ∈ dA(s(n)) | cons(α′) ≤ v A(n)}
5: for α′ ∈ Act A do
6: Act Agt ← {α ∈ d(s(n)) | αA = α′}
7: strat ← true
8: for α ∈ Act Agt do
9: s′ ← o(s(n), α)

10: strat ← strat ∧ strategy(node(n, s′, α, A), ψ)

11: if strat then
12: return true
13: return false

The function x-strategy for formulae of types 〈 〈A〉 〉↓Xψ and 〈 〈A〉 〉ζ Xψ is shown in Algorithm 3 and is straightforward. 
After checking if the search should be terminated with false because the ATL version of the formula is false (lines 2–3),12

we simply check if there is an action of A that is possible given the current endowment (line 4), and where in all outcome 
states A has a strategy to enforce ψ (lines 5–12). atl(φ) is a function that returns the formula where each 〈 〈A〉 〉↓ and 〈 〈A〉 〉ζ
in φ is replaced by 〈 〈A〉 〉.

The function u-strategy for formulae of types 〈 〈A〉 〉↓ψ1Uψ2 and 〈 〈A〉 〉ζ ψ1Uψ2 is shown in Algorithm 4. First u-strategy

checks whether the search should be terminated with false because either the ATL version of the formula is false (lines 2–3), 
or the current path ends in an unproductive loop (lines 4–5). We then check the path for a productive loop, and update 
v(n) if we find one (lines 6–7). If the ATL version of ψ2 is true, we try to find a strategy to enforce ψ2 from s(n), and, if we 
are successful, u-strategy returns true (lines 8–9). We then check if the endowment in n is insufficient to enforce ψ1, and 
terminate the search with false if it is not (lines 10–11). (This check is required as only the ATL version of the formula is 
checked at lines 2–3.) Otherwise the search continues, as the node where strategy(n, ψ2) returns true may be found later 
on the path. Each action available at s(n) is considered in turn (lines 12–20). For each action α′ ∈ Act A, we check whether 
a recursive call of the algorithm returns true in all outcome states s′ of α′ (i.e., α′ is part of a successful strategy). If such an 
α′ is found, the algorithm returns true. Otherwise the algorithm returns false. Note that we never traverse a productive loop 
more than twice: if an arbitrary amount of the resource(s) produced by the loop is insufficient to enforce ψ2 (and hence 
return true), at the beginning of the third traversal the search will be terminated with false at the test for an unproductive 
loop (since the second traversal of the loop did not result in a change in the endowment).

The function g-strategy for formulae of types 〈 〈A〉 〉↓Gφ and 〈 〈A〉 〉ζ Gφ is shown in Algorithm 5. Again we check if the 
search should be terminated with false, either because the standard ATL modality does not hold (lines 2–3), or because the 
current path terminates in a resource consuming cycle (lines 4–7). The first check is for cycles where at least one resource 
is consumed and no resources are produced (lines 4–5). The second check is for cycles which both produce and consume 
resources (so the previous test does not apply), and where we have already shown we can produce an arbitrary amount 
of the resource being consumed (lines 6–7). As any arbitrary amount of resource is insufficient to maintain such a loop 
indefinitely, we terminate the search with false. We then check the path for a productive loop, and update v(n) if we find 
one (lines 8–9). Note that, to enforce an invariant, only a path ending in a nondecreasing loop (as opposed to a productive 
loop) is required. However we must correctly update the endowment available in n in order to evaluate ψ in 〈 〈A〉 〉↓Gψ . 
We then check if the endowment in n is insufficient to enforce ψ from s(n), and terminate the search with false if it is 
not (lines 10–11). If the current path terminates in a nondecreasing loop, we return true (lines 12–13): ψ is enforceable 
from each of the states on the path, and the loop can be traversed indefinitely. Otherwise we continue the search for a 
nondecreasing loop (lines 14–22).

To illustrate the execution of the algorithm, we revisit the running example from Section 3.4 and consider the property

〈〈1〉〉1:5,2:0 �U〈〈1〉〉↓Gp

We skip the ATL labelling step and consider the initial call to

u-strategy(node0(q0, (1:5,2:0), (1:5,2:0), {1}), 〈〈1〉〉1:5,2:0�U〈〈1〉〉↓Gp)

where n0 = node0(q0, (1 :5, 2 :0), (1 :5, 2 :0), {1}). For n0, no cases of Algorithm 4 are applicable until line 12. Act A (actions 
of agent 1 for which the resource consumption is less than v1(n0), i.e., less than 5) consists of idle and move actions. 

12 Note that the checks for the ATL versions of the formula in x-strategy, u-strategy and g-strategy are only for efficiency, and are not required for the 
correctness of the algorithms.
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Algorithm 4 U-strategy (both types of modalities).
1: function u-strategy(n, 〈 〈A〉 〉∗ψ1Uψ2)
2: if s(n) �|= atl(〈 〈A〉 〉∗ψ1Uψ2) then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ v A(n′) ≥ v A(n) then
5: return false

6: for (a, r) ∈ {(a, r) ∈ A × Res | ∃n′ ∈ p(n) : s(n′) = s(n) ∧ v A(n′) ≤ v A(n) ∧ v(n′)(a, r) < v(n)(a, r)} do
7: v(n)(a, r) ← arb

8: if s(n) |= atl(ψ2) ∧ strategy(n, ψ2) then
9: return true

10: if ¬ strategy(n, ψ1) then
11: return false

12: Act A ← {α′ ∈ dA(s(n)) | cons(α′) ≤ v A(n)}
13: for α′ ∈ Act A do
14: Act Agt ← {α ∈ d(s(n)) | αA = α′}
15: strat ← true
16: for α ∈ Act Agt do
17: s′ ← o(s(n), α)

18: strat ← strat ∧ u-strategy(node(n, s′, α, A), 〈 〈A〉 〉∗ψ1Uψ2)

19: if strat then
20: return true
21: return false

Algorithm 5 G-strategy (both types of modalities).
1: function g-strategy(n, 〈 〈A〉 〉∗Gψ )
2: if s(n) �|= atl(〈 〈A〉 〉∗Gψ) then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ e A(n′) ≥ e A(n) ∧
(∃a ∈ A, r ∈ Res : e(n′)(a, r) > e(n)(a, r)) then

5: return false

6: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧
∀a ∈ A ∀r ∈ Res : (v(n′)(a, r) = v(n)(a, r) = arb ∨ e(n′)(a, r) = e(n)(a, r)) ∧
∃a ∈ A ∃r ∈ Res : e(n′)(a, r) > e(n)(a, r) then

7: return false

8: for (a, r) ∈ {(a, r) ∈ A × Res | ∃n′ ∈ p(n) : s(n′) = s(n) ∧ v A(n′) ≤ v A(n) ∧ v(n′)(a, r) < v(n)(a, r)} do
9: v(n)(a, r) ← arb

10: if ¬ strategy(n, ψ) then
11: return false

12: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ e A(n′) ≤ e A(n) then
13: return true
14: Act A ← {α′ ∈ dA(s(n)) | cons(α′) ≤ v A(n)}
15: for α′ ∈ Act A do
16: Act Agt ← {α ∈ d(s(n)) | αA = α′}
17: strat ← true
18: for α ∈ Act Agt do
19: s′ ← o(s(n), α)

20: strat ← strat ∧ g-strategy(node(n, s′, α, A), 〈 〈A〉 〉∗Gψ)

21: if strat then
22: return true
23: return false

Let us trace the algorithm calls for idle first. There are two joint actions we need to consider (line 14): (idle, idle) and 
(idle, obstruct). In both cases the result will be the same, the next call to u-strategy(n, 〈 〈1〉 〉1:5,2:0�U〈 〈1〉 〉↓Gp), where n
is the successor node by the joint action, will return false on line 4. This is because n will have the same state (q0, 
since o(q0, (idle, idle)) = o(q0, (idle, obstruct)) = q0) and v1(n) = v1(n0) (resources available to agent 1 have not changed 
since idle costs nothing). Let us consider the choice of σ = move on line 13. There are two joint actions on line 14, 
{(move, idle), (move, obstruct)}.

First let us consider (move, idle). On line 17, s′ is q1 and node(n0, q1, (move, idle), {1}) is n1 where s(n1) = q1, 
p(n1) = [n0], e1(n1) = v1(n1) = 3 (since move actions cost 2 units of energy, agent 1’s resources are decremented) 
and e2(n1) = v2(n1) = 0 (agent 2’s resources do not change since it is not in the proponent coalition). When we call 
u-strategy(n1, 〈 〈1〉 〉1:5,2:0�U〈 〈1〉 〉↓Gp), the first applicable case is on line 8. The ATL version of 〈 〈1〉 〉↓Gp is true, and in 
fact g-strategy(n1, 〈 〈1〉 〉↓Gp) returns true. (We will show this after we finish tracing the calls to u-strategy.) So on line 
8 the call to u-strategy(n1, 〈 〈1〉 〉1:5,2:0�U〈 〈1〉 〉↓Gp) returns true. Let us consider (move, obstruct). On line 17, s′ is q2 and 
node(n0, q2, (move, obstruct), {1}) is n2 where s(n2) = q2, p(n2) = [n0], e1(n2) = v1(n2) = 3 (since move actions cost 2 units 
of energy, agent 1’s resources are decremented) and e2(n2) = v2(n2) = 0 (agent 2’s resources do not change since it is not 
in the proponent coalition). When we call u-strategy(n2, 〈 〈1〉 〉1:5,2:0�U〈 〈1〉 〉↓Gp), the if statement on line 8 is not applicable 
since the invariant formula is not true in q2. We continue to line 12 and collect all actions by agent 1 with resource con-
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sumptions of at most v1(n2). Such actions are idle and move. We skip the case of idle, as it is identical to choosing idle in n0. 
Let us consider move. The only joint action possible if agent 1 choses move is (move, idle), since in q2, agent 2 has only the 
idle action. On line 17, s′ is q1 and node(n2, q1, (move, idle), {1}) is n3 where s(n3) = q1, p(n3) = [n0, n2], e1(n3) = v1(n3) = 1
(since move actions costs 2 units of energy, agent 1’s resources are decremented) and e2(n3) = v2(n3) = 0 (agent 2’s re-
sources do not change since it is not in the proponent coalition). When we call u-strategy(n3, 〈 〈1〉 〉1:5,2:0�U〈 〈1〉 〉↓Gp), the 
call to g-strategy(n3, 〈 〈1〉 〉↓Gp) returns true (which will be shown next), and hence all calls to u-strategy from n0 for the 
joint actions extending move return true.

Now we show that g-strategy(n3, 〈 〈1〉 〉↓Gp) returns true (the case of g-strategy(n1, 〈 〈1〉 〉↓Gp) is similar but easier, since 
agent 1 in n1 has a greater resource availability). None of the cases in Algorithm 5 before line 14 are applicable. Here, 
the available actions are idle and send (the agent still has one unit of energy left). If we try idle, then the next call to the 
algorithm will return false on line 2 since idle will bring us back to q0 which does not satisfy the ATL version of the formula 
〈 〈1〉 〉↓Gp. If we select send, then in the resulting node n4 the applicable actions are idle and charge; the choice of idle will 
again lead to failure, but by selecting charge we reach n5 where the state is q1 again (so s(n5) = s(n3)), and e1(n5) = e1(n3), 
so the algorithm returns true on line 13.

5.2. Correctness of the model checking algorithm

In this section we show that the algorithm always terminates (Lemma 7) and that it gives the correct answer (Lemma 8). 
Together, the two lemmas give the proof of the main result:

Theorem 5. The model checking problem for pprRAL over iRBMs is decidable.

Proof. Follows from Lemma 7 and Lemma 8 below. �
Lemma 7. Algorithm 2 terminates.

Proof. The proof is by induction on the length of the formula. Calls for propositional formulae clearly terminate. For the 
inductive step, we need to show that a call for any connective terminates provided calls for lower complexity formulae 
terminate. Conjunction and disjunction are obvious. x-strategy makes a recursive call to determine if there is a strategy for 
a smaller complexity formula after one step. The only non-trivial cases are u-strategy and g-strategy.

Let us consider termination of u-strategy first. We need to show that there cannot be an infinite sequence of recursive 
calls to u-strategy(node(n, s′, α, A), 〈 〈A〉 〉∗ψ1Uψ2) (see line 18 of Algorithm 4). Such an infinite sequence would imply that 
the search is stuck in an infinite loop and hence encounters the same state infinitely often. There are three types of loops 
to consider: (1) a consuming or neutral loop (where for all proponent agents and all resources, the amount of each resource 
stays the same or decreases); (2) a productive loop (where for all proponent agents and all resources, the amount of each 
resource stays at least the same and increases for at least one agent and resource type) and (3) mixed (for some agents 
and resource types, resource availability increases and for some it goes down). Clearly the search will terminate in case 
(1) because of the loop check on line 4. Note that we compare v rather than e endowments because we do not want to 
keep looping after discovering a way to earn arb resources. If the agents are in a productive loop (case (2)), eventually all 
increasing resources are set to arb in line 7, and v stops changing, hence we fall back to case (1) and terminate due to the 
check on line 4. Finally, consider a case of a mixed loop (case (3)). Here we have two sub-cases: (3a) when for at least one 
agent and resource pair, (a, r), the loop decreases the value of e(n)(a, r), v(n)(a, r) �= arb; and (3b) when for all such pairs 
where resources are consumed, v(n)(a, r) = arb. In case (3a) termination is trivial since the actions which constitute the 
loop will not be possible after the required resources are consumed. In case (3b) the ‘decreasing’ resources are all arb, so 
the same actions are still available. However, we assumed that in (3b) for all other pairs (a, r) resources grow (so v(n)(a, r)
is eventually set to arb) or stay the same. After all growing resources are set to arb, there is no further change and the 
search will terminate in the loop check on line 4. This concludes the proof that u-strategy terminates.

Let us consider g-strategy. Again we need to show that there cannot be an infinite sequence of recursive calls to 
g-strategy(node(n, s′, α, A), 〈 〈A〉 〉∗Gψ) (line 20 of Algorithm 5). Again such a sequence would need to involve a loop and 
there are three cases to consider: (1) an increasing or neutral loop (for all agents and resource types, endowments e increase 
or remain the same); (2) a decreasing loop (also for endowments e); and (3) a mixed loop. In case (1) we terminate on 
lines 12–13; in case (2) we terminate on lines 4–5. Case (3) again has two subcases: (3a) and (3b). The reasoning is the 
same as in the case for u-strategy; case (3a) is straightforward, case (3b) is covered by the check on lines 6–7. �

Given v : Agt × Res → N
∞
0 ∪ {arb}, the set of endowments compatible with v is defined as compatible(v) = {e : Agt ×

Res → N
∞
0 | ∀a ∈ Agt, r ∈ Res : v(a, r) = arb ∨ e(a, r) = v(a, r)}, i.e., all individual endowments of e for each agent and 

resource agree with v whenever v(a, r) �= arb.

Lemma 8. Algorithm 2 is correct, that is, strategy(n, φ) returns true iff ∃ e′ ∈ compatible(v(n)) : s(n), e′ |= φ .

The proof is given in Appendix B.
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Table 1
Summary of known decidability and undecidability results.

Logic Models

RBM iRBM

RAL Undecidable [2] Undecidable (Corollary of [2])

rfRAL Undecidable [2] Undecidable for two agents and two resource types (Theorem 1)
Undecidable for four agents and one resource type (Theorem 3)

prRAL Undecidable [2] Undecidable (Corollary of [2])
Undecidable for one agent and two resource types (Theorem 2)
Undecidable for two agents and one resource type (Theorem 4)

rfprRAL Undecidable [2] Decidable (Corollary of [6])

pprRAL Undecidable (Corollary of [2]) Decidable (Theorem 5)

6. Discussion

Over the last few years, logics for reasoning about strategic, resource-bounded agents and models have become a popular 
research topic, e.g. [1,3,6,2,14,15,4,5], and, given current trends in the development of intelligent systems (e.g., driverless 
cars, unmanned vehicles, autonomous robots), the formal verification of resource-bounded systems will become even more 
important in the near future. Unfortunately, formal, logic-based techniques for the verification of resource-bounded systems 
are often intractable or even undecidable.

In this paper we investigated the boundary of (un)decidable logics for verifying resource-bounded systems. We identified 
a significant fragment of Resource Agent Logic (RAL) with a decidable model checking property, and proved two new 
undecidability results. We have shown that a rather natural property of models — that agents can always decide to do 
nothing — can make model checking decidable. In particular, the positive proponent-restricted fragment of RAL that we 
present, pprRAL, is decidable in the presence of idle actions and undecidable without them. However, the availability of idle 
actions is not sufficient on its own to make the model checking of RAL, or even of the proponent-restricted fragment prRAL, 
decidable. We show that considering opponents acting under resource bounds makes model checking undecidable, as does 
allowing coalition modalities in the scope of negations. The summary of known decidability and undecidability results is 
presented in Table 1.

Note that iRBMs are very similar to RBMs with finite semantics of [2] (see [8] and [9] for a formal statement of corre-
spondence). The result presented here, together with those of [8,9] implies that pprRAL is decidable over RBMs under finite 
semantics.

Finally, we did not discuss the complexity of the model checking problem for pprRAL over iRBMs in this paper. We 
conjecture that it is the same as the model checking problem for RB±ATL, which was recently shown in [35] to be 
2exptime-complete.
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Appendix A. Encodings and proofs from Section 4

A.1. Encodings and proofs from Section 4.1

Proposition 1. Let A be an empty-band TCM and λ = (qi, ηi)i=1,...,3(k−1)+1 be an A-computation pre-encoding.

(a) We have that η3(k−1)+1(1, Rr) = η3(k−1)+1(2, Rr) for r = 1, 2.
(b) If λ ◦ (sE1 E2, η)(s′C1C2, η′) is a finite resource-extended path, then so is λ ◦ (sE1E2, η)(s′C1C2, η′)(s′, η′′) for a uniquely defined 

endowment η′′ .
(c) If λ[i] = (qi, ηi) = (sE1 E2, ηi) with Er = 0, then (ηi(1, Rr) = 0 if, and only if, ηi(2, Rr) = 0), for r ∈ {1, 2}.

Proof. Let λ = (qi, ηi)i=1,...,3(k−1)+1. (a) We show this by induction on k. For k = 1 the claim follows by definition. 
Now, suppose the claim is true for all computation pre-encodings up to (and excluding) k ≥ 2. That is, it is true for 
λ = (qi, ηi)i=1,...,3(k−1)+1, which is also an A-computation pre-encoding. That is, η3(k−1)+1(1, Rr) = η3(k−1)+1(2, Rr) for 
r = 1, 2. Consider the A-computation pre-encoding (where we simply consider how λ has to be extended given the con-
struction of the model)

λ′ = (qi, ηi)i=1,...,3k+1
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= λ ◦ (q3(k−1)+2, η3(k−1)+2)(q3(k−1)+3, η3(k−1)+3)(q3k+1, η3k+1)

= λ ◦ (sk Ek
1 Ek

2, η
3(k−1)+2)(sk+1Ck

1Ck
2, η

3(k−1)+3)(sk+1, η3k+1)

Now, a simple computation, taking into consideration the structure of the model, gives: η3k+1(1, Rr) = η3(k−1)+3(1, Rr) =
η3(k−1)+2(1, Rr) + Ck

r + Ek
r = η3(k−1)+1(1, Rr) + Ck

r
I H= η3(k−1)+1(2, Rr) + Ck

r = η3(k−1)+2(2, Rr) + Ck
r = η3(k−1)+3(2, Rr) + Ck

r =
η3k+1(2, Rr).

(b) We have to show that η′′(1, Rr) ≥ 0 and η′′(2, Rr) ≥ 0 for r ∈ {1, 2}. The former is clear because η′(1, Rr) ≥ 0 and 
the endowment for player 1 does not change in the transition from s′C1C2 to s′ . For the latter, we make the following 
observation: η′′(2, Rr) = η′(2, Rr) + Cr = η3(k−1)+1(2, Rr) + Cr where the latter equality holds as the resources of agent 2 do 
not change between the state q3(k−1)+1 and s′C1C2. Now, by (a), we have that η3(k−1)+1(2, Rr) + Cr = η3(k−1)+1(1, Rr) + Cr . 
Finally, we can compute that η3(k−1)+1(1, Rr) + Cr = η(1, Rr) + Er + Cr = η′(1, Rr) ≥ 0 as λ ◦ (sE1 E2, η)(s′C1C2, η′) is a finite 
resource-extended path by assumption. Finally, η′′ is uniquely defined as there is only a unique action from s′C1C2 to s′ .

(c) Suppose a configuration (sE1 E2, ηi) with Er = 0 is reached. Then, action E1 E2 (resp. idle) was performed in λ[i −
1] = (s, ηi−1) by agent 1 (resp. 2). Note that none of the actions changes the resource balance of Rr . Suppose now that 
ηi(x, Rr) = 0 for x ∈ {1, 2}. Then, also ηi−1(x, Rr) = 0 and by (a) ηi−1(3 − x, Rr) = 0. With the above observation we can 
conclude that also ηi(3 − x, Rr) = 0. �
Lemma 1 (Simulation Lemma for MA

1 ). There is a bijection f A between computations of A and A-computation encodings of MA
1

in such a way that f A(ρ) simulates the computation ρ . In particular, if ρ is an accepting computation then f A(ρ) is also accepting.

Proof. Let ρ = (si, vi
1, v

i
2)i=1,...,k be a finite A-computation. From ρ we inductively construct the following finite resource-

extended path λ = λρ = (q j, η j) j=1,...,3(k−1)+1.

(a) First, we consider the first configuration i = 1. Assume that k > 1. Let ρ1 = ((s1, E1, E2), (s2, C1, C2)). We define (i) 
q1 = s1, η1(1, Rr) = η1(2, Rr) = v1

r for r ∈ {1, 2}; (ii) q2 = s1 E1 E2, η2(1, Rr) = η1(1, Rr) − Er for r ∈ {1, 2}; and (iii) q3 =
s2C1C2, η3(1, Rr) = η2(1, Rr) + Er + Cr for r ∈ {1, 2}. In the case that k = 1, we define q1 = s1, η1(1, Rr) = η1(2, Rr) = v1

r
for r ∈ {1, 2}.

(b) Inductively, we assume that the path has been constructed up to position i − 1 of computation ρ , that is up to 3(i −
1) + 3 on λ. Suppose i < k and let ρi = ((si, E1, E2), (si+1, C1, C2)). Again, we define (i) q3i+1 = si , η3i+1(1, Rr) = vi

r for 
r ∈ {1, 2}; (ii) q3i+2 = si E1 E2, η3i+2(1, Rr) = η3i+1(1, Rr) − Er for r ∈ {1, 2}; and (iii) q3i+3 = si+1C1C2, η3i+3(1, Rr) =
η3i+2(1, Rr) + Er + Cr for r ∈ {1, 2}. In the case that k = i, we define q3i+1 = si , η3i+1(1, Rr) = vi

r for r ∈ {1, 2}.

First, we prove the following claim which is essential for the rest of the proof.

Claim. For every i = 1, . . . , k we have that (i) si = q3(i−1)+1 , (ii) vi
r = η3(i−1)+1(1, Rr) for r ∈ {1, 2}, and if i < k, then (iii) q3(i−1)+2 =

si Ei
1 Ei

2 with Ei
r = 0 for r ∈ {1, 2} implies η3(i−1)+2(1, Rr) = 0, and also (iv) vi+1

r = η3(i−1)+3(1, Rr) for r ∈ {1, 2}.

Proof of claim. We prove the claim by induction on i ≤ k.
Induction base: Let i = 1 ≤ k. We have that (i) s1 = q1 and (ii) v1

r = η1
j (1, Rr) by construction.

Induction step: Suppose the claim is true up to i < k. We show the case for i +1. First, suppose that i +1 = k. By induction, 
we have that η3(i−1)+1(1, Rr) = vi

r , η3(i−1)+3(1, Rr) = vi+1
r , and by Proposition 1(a) η3(i−1)+1(1, Rr) = η3(i−1)+1(2, Rr). Thus, 

by Proposition 1(b) configuration q3i+1 = (si+1, η3i+1) can be reached. Moreover, the resources for agent 1 do not change in 
the step transition from q3(i−1)+3 to q3i+1, which shows that η3i+1(1, Rr) = vi+1

r .
Now, we consider the case i + 1 < k. Cases (i) and (ii) follow completely analogously. By construction, if q3i+2 =

si+1 Ei+1
1 Ei+1

2 with Ei+1
r = 0 then ρi+1 = ((si+1, E1, E2), (si+2, C1, C2)) with Er = 0. This transition can only be taken by 

the automaton if vi+1
r = 0. Then, by (ii) η3i+1(1, Rr) = 0. Finally, action Ei+1

1 Ei+1
2 can only consume resources by construc-

tion of the automaton. This shows that also η3i+2(1, Rr) = 0. For (iv) we observe that η3i+2(1, Rr) = η3i+1(1, Rr) − Ei+1
r

and thus η3i+3(1, Rr) = η3i+2(1, Rr) + Cr + Ei+1
r = η3i+1(1, Rr) + Cr

(ii)= vi+1
r + Cr = vi+2

r . �
Using the claim we now have to show that the thus constructed sequence is indeed an A-computation pre-encoding 

(Definition 4) and that it is a simulation (Definition 5). The two conditions of Definition 4 follow immediately. Also, by the 
claim it follows that λ is indeed a path in MA

1 .
For the first condition of Definition 5, we consider two cases. If ρ = (s, v1, v2) consists of a single configuration, then by 

(a) λ = (s, η). Hence, λ has length 3 · 0 + 1. For the second case, |ρ| = k > 1, we observe that we added for each i < k, three 
states to λ (s, sE1 E2, and s′C1C2), and an additional state for i = k. Thus, λ has length 3(k − 1) + 1. The other conditions (2) 
and (3) of the Definition follow from (i–iii) of the claim.

We refer to the thus constructed path as f A(ρ). Different ρ ’s yield different f A(ρ)’s. It remains to show that f A

is surjective. For an arbitrary A-computation encoding λ, each triple of states (s)(sE1 E2)(s′C1C2) on λ defines a unique 
transition τi = ((s, E1, E2), (s′, C1, C2)). Given the initial configuration (q1, η1) with η1(1, Rr) = η1(2, Rr) for r ∈ {1, 2} and 
the sequence of the τi ’s, we can compute the computation ρ . It is immediate that f A(ρ) = λ. �
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Lemma 2. The empty-band TCM A halts iff MA
1 , sinit, ̄0 |= 〈 〈1〉 〉0̄

{1,2}F halt.

Proof. Let the empty-band TCM A = (S, sinit, S f , �) be given and MA
1 be the iRBM constructed according to Definition 3.

“⇒” Assume that A halts and let ρ = (si, vi
1, v

i
2)i=1,...,k be a minimal length accepting run of A. By Lemma 1 (Simulation 

Lemma), λ = f A(ρ) = (q j, η j) j=1...3(k−1)+1 is an accepting A-computation encoding that simulates ρ . Each subsequent 
configurations (qi, ηi) and (qi+1, ηi+1), for i = 1, . . . , 3(k − 1) + 1 on λ define a unique action of agent 1. Let s1 be the 
strategy which assigns to each history q1 . . .qi this unique action of agent 1 leading to qi+1. The strategy assigns idle 
to all other histories, including λ itself. We assume that player 1 follows strategy s1. As λ simulates ρ , agent 2 can 
never perform a test action in states of type sE1 E2 according to Definition 5.3 and Proposition 1(c). Thus, agent 2 can 
only choose between actions in states of type sC1C2, otherwise it can only perform a unique action (the idle action). 
As a consequence, the outcome set wrt. s1 contains the following paths:

out(q1, 0̄, s1, {1,2}) = {(q1, η1) . . . (qk, ηk)(q�, ηk+1) . . .}
∪{(q3(i−1)+1, η3(i−1)+1)

(q3(i−1)+2, η3(i−1)+2)

(q3(i−1)+3, η3(i−1)+3)i=1,..., j(qh, η
3 j+1) . . . | 1 ≤ j < k}.

All these paths contain a state labelled halt. This shows that MA
1 , sinit, ̄0 |= 〈 〈1〉 〉0̄

{1,2}F halt.

“⇐” Assume that MA
1 , sinit, ̄0 |= 〈 〈1〉 〉0̄

{1,2}F halt holds. Then, there is a witnessing strategy s1 of agent 1 such that for all 
λ = (qi, ηi)i∈N ∈ out(s1, ̄0, s1, {1, 2}) there is a minimal index k such that π(qk) = halt. In particular, the set contains a 
path in which the state qh is never visited. This follows from Proposition 1(b). We denote the prefix of this path that is 
cut directly after the state labelled halt by λ′ . On λ′ it can never be the case that in a state qi = sE1 E2 with Er = 0 we 
have that ηi(2, Er) > 0; otherwise, the outcome would also contain a path which loops in q f because agent 2 could 
perform the test action. But this would contradict s1 being a witnessing winning strategy. Thus, we have ηi(2, Er) = 0
and by Proposition 1(c) also ηi(1, Er) = 0, for r ∈ {1, 2}. Thus, by the Simulation Lemma, there is ρ with f A(ρ) = λ′
that is an accepting run of the automaton. The automaton halts. �

A.2. Encodings and proof from Section 4.2

The formal definition of the encoding of a two counter automaton as a resource-bounded model with idle actions and a 
single resource type is given next.

Definition 7 (MA
2 ). Let (S, sinit, S f , �) be an empty-band TCM. From A we construct the iRBM MA

2 = ({1, 2, 3, 4}, Q , �, π,

Act, d, o, {R}, t) where:

1. The sets of states Q = S ∪ Q 1 ∪ Q 2 ∪ {q f , qh, q�} and of propositions and their valuations are defined as in Definition 3.
2. The set Act is defined as follows. For each transition (s, E1, E2)�(s′, C1, C2) of A the set contains actions E1 E2, E1 E2, 

s
′ C1C2
E1 E2

, s
′ C1C2
E1 E2

, s′C1C2, and s′C1C2. Additionally, there is an action idle and test actions testi for i ∈ {1, 2}.
3. The action availability is defined according to �. For agent 1 we have:

E1 E2 ∈ d1(s) iff (s, E1, E2)�(s′, C1, C2) for some (s′, C1, C2)

idle ∈ d1(q) for all q ∈ Q

s
′ C1C2
E1 E2

∈ d1(sE1 E2) iff (s, E1, E2)�(s′, C1, C2)

and analogously for agent 2 but E2 and C2 are underlined instead of E1 and C1, respectively. For agent 3 we have:

idle ∈ d3(q) for all q ∈ Q

s′C1C2 ∈ d3(s′C1C2) for all s′C1C2 ∈ Q 2

test1 ∈ d3(sE1 E2) iff E1 = 0

and again analogously for agent 4 but E2 and C2 are underlined instead of E1 and C1, respectively. Moreover, test2 ∈
d4(sE1 E2) iff E2 = 0, that is, the test action is only available if the counter which the agent is supposed to simulate is 
empty.
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4. We abstain from giving the transition function o and refer to Fig. 4 where we call an action profile (E1 E2, E ′
1 E ′

2, idle, idle)
invalid if (i) Ei �= E ′

i for some i ∈ {1, 2} or (ii) if there is no transition ((s, E1, E2), (s′, C1, C2)) ∈ �. Similarly, we call an 

action profile (s
C1C2
E1 E2

, sC ′
1C ′

2
E ′

1 E ′
2
, idle, idle) invalid in state sE1 E2 if (i) Ci �= C ′

i or Ei �= E ′
i for some i ∈ {1, 2} or (ii) if there is 

no transition ((s, E1, E2), (s′, C1, C2)) ∈ �.
5. For i ∈ {1, 2, 3, 4}, the actions’ resource consumption/production is defined by the function t:

t(E1 E2, R) = −E1

t(E1 E2, R) = −E2

t(idle, R) = 0

t(s
C 1C2
E1 E2

, R) = C1 + E1

t(s
C1C2
E1 E2

, R) = C2 + E2

t(sC 1C2, R) = C1

t(sC1C2, R) = C2

t(test1, R) = −1

t(test2, R) = −1

Theorem 4. Model checking prRAL over the class of iRBMs is undecidable even in the case of single resource and two agents.

Proof. We modify the model MA
2 = ({1, 2, 3, 4}, Q , �, π, Act, d, o, {R}, t) to a model M̂A

2 = ({1,2}, Q \{qh}, �, ̂π, ̂Act, ̂d,

ô, {R}, ̂t). Essentially, we merge agents {1, 3} and agents {2, 4} into agent 1 and 2 in the new model, respectively. The 
main encoding is shown in Fig. 5. We define d̂i(q) as di(q) for i ∈ {1, 2} where it is additionally required that test1 ∈
d̂1(sE1 E2) iff E1 = 0, and test2 ∈ d̂2(sE1 E2) iff E2 = 0; coalition {1, 2} can now make all decisions. The action set Âct equals 
Act but all actions of type sC 1C2 and sC1C2are removed. The transition function ̂o is obtained from o:

ô(s, (E1 E2, E1 E2)) = sE1 E2

ô(s, (idle, �)) = q�

ô(s, (�, idle)) = q�

o(sE1 E2, (idle, �)) = q�

o(sE1 E2, (�, idle)) = q�

ô(q�, (idle, idle)) = q�

ô(sE1 E2, (s
′ C1C2
E1 E2

, s
′ C1C2
E1 E2

)) = sC1C2

ô(sE1 E2, (test1, �)) = q f

ô(sE1 E2, (�, test2)) = q f

ô(q f , (idle, idle)) = q f

ô(s′C1C2, (idle, idle)) = s′

Moreover, invalid action profiles executed in states s and sE1 E2 also result in the loop state q� . Here, we call an action 
profile (E1 E2, E ′

1 E ′
2) invalid if (i) Ei �= E ′

i for some i ∈ {1, 2} or (ii) if there is no transition ((s, E1, E2), (s′, C1, C2)) ∈ �. 

Similarly, we call an action profile (s
C 1C2
E1 E2

, sC ′
1C ′

2
E ′

1 E ′
2
) invalid in state sE1 E2 if (i) Ci �= C ′

i or Ei �= E ′
i for some i ∈ {1, 2} or (ii) if 

there is no transition ((s, E1, E2), (s′, C1, C2)) ∈ �.
The cost function t̂ is defined as before restricted to the new action set. (States of type sC1C2 are only kept due 

to compatibility reasons.) As in the related case, it is easy to see that each resource-extended path λ = (qi, ηi)i∈N
in MA

2 that does not contain state qh corresponds to a path λ = (qi, ̂ηi)i∈N in M̂A
2 with η̂i(1, R) = ηi(1, R) and 

η̂i(2, R) = ηi(2, R) for all i. By the analogue of Proposition 1(c) given in Section 4.2.2, the zero-test simulated in the test 
states can equivalently be defined with respect to agent 1’s and 2’s resource endowments. It holds that MA

2 , qinit, ̄0 |=
〈 〈{1,2,3,4}〉 〉0̄((¬〈 〈{1,2,3,4}〉 〉↓X fail)U halt) if, and only if, M̂A

2 , qinit, ̄0 |= 〈 〈{1,2}〉 〉0̄((¬〈 〈{1,2}〉 〉↓X fail)U halt). �
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Appendix B. Proof from Section 5

Lemma 8. Algorithm 2 is correct, that is, strategy(n, φ) returns true iff ∃e′ ∈ compatible(v(n)) : s(n), e′ |= φ .

Proof. The proof is by induction on the structure of the formulae.
Base case:
Case φ = p for some p ∈ �: strategy(n, p) returns true iff s(n) |= p (by lines 2–3 in Algorithm 2) iff s(n), e′ |= p for any 
e′ ∈ compatible(v(n)) (by the semantics of RAL). Obviously, compatible(v(n)) �= ∅.
Case φ = ¬p for some p ∈ �: Similarly, strategy(n, ¬p) returns true iff s(n) �|= p (by lines 4–5 in Algorithm 2) iff s(n), e′ �|= p
for any e′ ∈ compatible(v(n)). Again, compatible(v(n)) �= ∅.
Induction step: The proof is done for each case of pprRAL formulae.
Case φ = φ1 ∧ φ2: strategy(n, φ) returns true iff strategy(n, φ1) and strategy(n, φ2) return true (by lines 6–7), iff ∃e′

1 ∈
compatible(v(n)) : s(n), e′

1 |= φ1 and ∃e′
2 ∈ compatible(v(n)) : s(n), e′

2 |= φ2 (by induction hypothesis), iff s(n), e′ |= φ1 ∧φ2 (by 
the semantics of RAL) where e′ = max{e′

1, e
′
2} ∈ compatible(v(n)) where maxV = v denotes the pointwise maximum from 

a finite set V of endowments, i.e., v(i, r) = max{e′(i, r) | e′ ∈ V } for all i ∈ Agt and r ∈ Res (note that this is straightforward 
by induction on the structure of formulae in pprRAL that s, v |= ϕ implies s, e′ |= ϕ for all states s and e′ ≥ v since pprRAL
contains only positive formulae).
Case φ = φ1 ∨ φ2: strategy(n, φ) returns true iff strategy(n, φ1) or strategy(n, φ2) return true (by lines 8–9), iff ∃e′

1 ∈
compatible(v(n)) : s(n), e′

1 |= φ1 or ∃e′
2 ∈ compatible(v(n)) : s(n), e′

2 |= φ2 (by induction hypothesis) iff s(n), e′ |= φ1 ∨ φ2 (by 
the semantics of RAL) for some e′ ∈ {v1, v2} ⊆ compatible(v(n)).
Case φ = 〈〈A〉〉↓Xψ : strategy(n, φ) returns true iff x-strategy(n′, φ) returns true (by lines 10–11) where n′ = node0(s(n), e(n),

v(n), A), iff there exists α′ ∈ Act A (according to lines 4–5 of Algorithm 3) such that for every α ∈ Act Agt (line 8 
of Algorithm 3) strategy(n′′, ψ ) returns true where n′′ = node(n′, sα, α, A) and sα = o(s(n′), α) (recall that va(n′′) =
va(n) − cons(αa) + prod(αa) for a ∈ A, va(n′′) = va(n) for a /∈ A and s(n′′) = sα ), iff for every α ∈ Act Agt , there ex-
ists vα ∈ compatible(v(n) − cons(α) + prod(α)) such that sα, vα |= ψ (by induction hypothesis), iff there exists e′ ∈
compatible(v(n) − cons(α′) + prod(α′)) such that for every α ∈ Act Agt sα, e′ |= ψ , where e′ = max{vα | α ∈ Act Agt} ∈
compatible(v(n) − cons(α′) + prod(α′)), iff s, e′ + cons(α′) − prod(α′) |= 〈 〈A〉 〉↓Xψ where e′ + cons(α′) − prod(α′) ∈
compatible(v(n)).

The case for 〈 〈A〉 〉ζ Xψ is similar to the above case, hence omitted here.
Case φ = 〈〈A〉〉↓ψ1Uψ2: strategy(n, φ) returns true iff u-strategy(n0, φ) returns true (by lines 14–15) where n0 =
node0(s(n), e(n), v(n), A).
(⇒): Let T denote the search tree rooted at n0 when u-strategy(n0, φ) returns true. For the purpose of this proof, we 
assume that each interior node n in T has an additional function a(n) which returns the action tuple of the proponent at 
s(n); and the function node(n, s, α, A) also assigns a(n) = α.

For every leaf n of T , we have that strategy(n, ψ2) returns true according to lines 8–9 of Algorithm 4. By the in-
duction hypothesis, we also have s(n), vn |= ψ2 for some vn ∈ compatible(v(n)). Similarly, for every interior node n
of T , strategy(n, ψ1) returns true according to lines 10–11 of Algorithm 4 and, hence, s(n), vn |= ψ1 for some vn ∈
compatible(v(n)). We first update the value of e(n) for every node in T so that resource availability is enough to sat-
isfy ψ1 at every interior node and ψ2 at every leaf node. The update is carried out from the leaves to the root of T as 
follows:

• For a leaf n, e(n) := max{vn, e(n)};
• For an interior node n with k children n1, . . . , nk , if e(ni) has been updated for all i ∈ {1, . . . , k}, then e(n) :=

max{vn, e(n), e(n1) + cons(a(n)), . . . , e(nk) + cons(a(n))}.

Let sT denote the strategy for A where for each node n ∈ T , with p(n) = n0 . . .nk , sT (s(n0) . . . s(nk)s(n)) = (a(n))A . 
However, this strategy may not be executable from n0 if, as a result of the initial resource availability e(n0), there is 
some node n in T such that e(n)(i, r) < 0 for some resource r and agent i. Note that whenever e(n)(i, r) < 0, we have 
v(n)(i, r) = arb according to lines 6, 7 and 12 of Algorithm 4. If v(n0)(i, r) = arb, we can simply increase the value of 
e(n0)(i, r) to compensate for the lack of resources above. In particular, we increase e(n0)(i, r) to e(n0)(i, r) − e(n)(i, r), then 
recalculate the value of e(n′)(i, r) for every node n′ in T . Then, e(n)(i, r) becomes 0. Obviously, this step only removes 
negative values and can be repeated until no further negative values can be removed. This means for any e(n)(i, r) < 0
we have v(n0)(i, r) �= arb. Then, there must be a loop within the path p(n) (according to lines 6–7 of Algorithm 4) that 
strictly increases resource r for agent i. To increase e(n)(i, r) to a positive value, we need to determine the number of times 
the loop should be performed. In particular, there must be a node n1 ∈ p(n) such that v(n1)(i, r) is assigned arb by the 
statement in lines 6–7 of Algorithm 4. Let n2 be the node n′ in line 6. We denote n1 by stopr(n) and n2 by startr(n). Let 
T (n̂) denote the subtree of T rooted in n̂ for every n̂ in T . For a resource r, if there is a node n with e(n)(i, r) < 0 for some 
i we extend T until e(n)(i, r) ≥ 0 by repeating the branch between startr(n) and endr(n) finitely many times. There are two 
sub-cases to consider:
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Fig. 6. n is the only node with e(n)(i, r) < 0 in T (startr(n)).

Fig. 7. T (startr(n)) also have n′ with e(n′)(a, r) < 0.

• Sub-case 1: n is the only node in T (startr(n)) with e(n)(i, r) < 0 as depicted by Fig. 6(a).
As the path from startr(n) to stopr(n) increases r for agent i by an amount of e(stopr(n))(i, r) − e(startr(n))(i, r), it is 
necessary to repeat this path � |e(n)(i,r)|

e(stopr (n))(i,r)−e(startr (n))(i,r) � times, as depicted in Fig. 6(b).
• Sub-case 2: n is not the only node in T (startr(n)) with e(n)(i, r) < 0. Other nodes n′ are either in the subtree T (stopr(n))

(as depicted by Fig. 7(a)) or in the subtree of T (startr(n)) but not T (stopr(n)) (as depicted by Fig. 7(b)). Without loss of 
generality, we assume that startr(n) is the ancestor of startr(n′) for any of such n′ .
Again, as the path from startr(n) to endr(n) increases r for agent i by an amount of e(endr(n))(i, r) − e(startr(n))(i, r), it 
is necessary to repeat this path k = � |e(n)(i,r)|

e(endr(n))(i,r)−e(startr (n))(i,r) � times, as depicted in Fig. 8(a). Note that this repetition 
will also repeat nodes n′ which are in the subtree of T (startr(n)) but not in T (stopr(n)) and have e(n′)(i, r) < 0 as 
n′

1, . . . , n
′
k depicted in Fig. 8(b).

Let T1 be the obtained tree. Then, the number of nodes n′′ in T1(nk−1) with e(n′′)(i, r) < 0 is strictly less than that in 
T (startr(n)). Therefore, we can reapply the above construction to obtain a tree T2 where all nodes n′′ in T2(nk−1) have 
e(n′′)(i, r) ≥ 0. These include node n′ as depicted in Fig. 8a and n′

k as depicted in Fig. 8b. Then, we further apply step 
by step the above construction for nodes n′

k−1, . . . , n′
1 and n′ in Fig. 8b. Finally, we obtain a tree T3 where all nodes 

n′′ have e(n′′)(i, r) ≥ 0. This construction can be repeated for other resources r′ �= r and agents i′ �= i. Finally, we obtain 
a tree T4 where for all nodes n in T4, e(n)(i, r) ≥ 0 for all r and i and sT4 is a strategy satisfying φ at s(n0) where 
n0 is the root of T4. In other words, we have s(n0), e(n0) |= φ where it is obvious that e(n0) ∈ compatible(v(n0)). Since 
n0 = node0(s(n), e(n), v(n), A), s(n) = s(n0) and v(n) = v(n0); therefore s(n), e(n0) |= φ where e(n0) ∈ compatible(v(n)).
(⇐): Assume that s(n), e′ |= φ for some e′ ∈ compatible(v(n)), then there exists a strategy sA such that for all 
λ ∈ out(q, e′, sA, A) : ∃ iλ ≥ 0 : λ|Q [iλ], λ|En[iλ] |= ψ2 and ∀ 0 ≤ j < iλ : λ|Q [ j], λ|En[ j] |= ψ1. We shall now prove that 
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Fig. 8. Repeating T (startr(n)).

strategy(n, φ) returns true, i.e., equivalently u-strategy(node0(s(n), e(n), v(n), A), φ) returns true. Let T = (V , E) be the tree 
induced by all runs λ[0, iλ] for λ ∈ out(q, e′, sA, A), i.e., V = {λ[0, i] | λ ∈ out(q, e′, sA, A), i ≤ iλ} and E = {(λ[0, i], λ[0, i +1]) |
λ ∈ out(s, e′, sA, A), i < iλ}. We first attach to each node λ[0, i] of T an element v(λ[0, i]) where

v(λ[0, i])(a, r) =
{

λ|En[i](a, r) if v(n)(a, r) �= arb

arb otherwise

In the following, we show how to convert T into a search tree which shows that u-strategy(node0(s(n), e(n), v(n), A), φ) 
returns true. Note that T must be finite and each edge in E corresponds to a join action of all agents.

Initially, let T0 = T , then Tl+1 is constructed from Tl as follows.

Case 1a If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q [ j] = λ|Q [k] ∧ v(λ[0, j]) ≥ v(λ[0, k]), then Tl+1 is constructed 
from Tl by replacing the subtree Tl(λ[ j]) by Tl(λ[k]), updating the values for λ[k′]|En and v(λ[0, k′]) for all k′ ≥ k
in the subtree Tl(λ[k]) according to the values λ[ j]|En and v(λ[0, j]) and the costs of actions in Tl(λ[k]).

Case 1b If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q [ j] = λ|Q [k] ∧ v(λ[0, j]) ≤ v(λ[0, k]) ∧ v(λ[0, j]) �= v(λ[0, k]), 
then Tl+1 is constructed from Tl by replacing the value v(λ[0, k′]) for all nodes λ[0, k′] in the subtree Tl(λ[k]) as 
follows
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v(λ[0,k′])(a, r) =
{

v(λ[0,k′])(a, r) if v(λ[0, j])(a, r) = v(λ[0,k])(a, r)

arb if v(λ[0, j])(a, r) < v(λ[0,k])(a, r)

Case 2 Otherwise, Tl+1 = Tl , i.e., no more change.

The construction stops when Tl+1 = Tl . Let the resulting tree Tl+1 = T ′ . For each node λ[0, i] in T ′ , we define a node nλ[0,i]
where: s(nλ[0,i]) = λ|Q [i], p(nλ[0,i]) = [λ|Q [0] · . . . ·λ|Q [i − 1]], c(nλ[0,i]) = A and e(nλ[0,i]) = λ|En[i] and v(nλ[0,i]) = v(λ[0, i]). 
In the following, we show by induction on the length of T ′(λ[0, i]) that u-strategy(nλ[0,i], φ) returns true.
Base case: Assume that λ[0, i] is a leaf of T ′ , then it is a leaf from T . Then, the condition of the if statement in lines 8–9 of 
Algorithm 4 is true, therefore, u-strategy(nλ[0,i], φ) returns true.
Induction step: Assume that λ[0, i] is not a leaf of T ′ . Then the condition of the if statement (lines 2–3) is false, since 
s(n) |= alt(φ) (where n is from the input of this Lemma). The condition of the next if statement (lines 4–5) is also false, 
since otherwise T ′ can be cut further by (Case 1a). The condition of the third or fourth if statement (lines 8–11) is false 
since otherwise λ[0, i] must have been a leaf of T ′ . Therefore, the algorithm must enter the second for loop. For α =
sA(λ|Q [0, i]) ∈ dA(λ[i]) we have that, for every s′ ∈ out(λ|Q [i], α) with n′ = node(nλ[0,i], s′, α, A), there must be λ′[0, i + 1]
in T ′ such that n′ = nλ′[0,i+1] . By the induction hypothesis, u-strategy(nλ′[0,i+1], φ) returns true. Thus, u-strategy(nλ[0,i], φ)

also returns true.
Obviously, u-strategy(node0(s(n), e(n), v(n), A), φ) returns true since nλ[0] = node0(s(n), e(n), v(n), A).
The above proof can be adapted to the case φ = 〈 〈A〉 〉ζ ψ1Uψ2 by exchanging the role of v(n) and ζ .

Case φ = 〈〈A〉〉↓Gψ : strategy(n, φ) returns true iff g-strategy(n0, φ) returns true (by lines 18–19) where n0 = node0(s(n),

e(n), v(n), A).
(⇒): Let T denote the search tree rooted at n0 when g-strategy(n0, φ) returns true.

For every node n of T , we have that strategy(n, ψ) returns true according to lines 10–11 of Algorithm 5. By induction 
hypothesis, we also have s(n), vn |= ψ for some vn ∈ compatible(v(n)). We first update the value of e(n) for every node in 
T so that resource availability is enough to satisfy ψ at every node. The update is carried out from the leaves to the root of 
T as follows:

• For a leaf n, e(n) := max{vn, e(n)};
• For an interior node n with k children n1, . . . , nk , if e(ni) has been updated for all i ∈ {1, . . . , k}, then e(n) :=

max{vn, e(n), e(n1) + cons(a(n)), . . . , e(nk) + cons(a(n))}.

Let sT denote the strategy for A where for each node n ∈ T , with p(n) = n0 . . .nk , sT (s(n0) . . . s(nk)s(n)) = (a(n))A . How-
ever, this strategy may not be executable from n0 if there is some node n in T such that e(n)(i, r) < 0 for some resource r
and agent i. We can repeat the tree expansions in the previous case to eliminate all such nodes. Let the obtained tree be 
T1. By lines 12–13, for all leaves n′ of T1, we have that there exists n′′ ∈ p(n′) such that e A(n′′) ≤ e A(n′). Then, we construct 
an infinite tree from T1 as follows:

• Given Ti , we construct Ti+1 by replacing all leaves n′ of Ti by the tree T1(n′′).
• T ′ = limi→∞ Ti .

Then, the strategy sT ′ from T ′ obviously satisfies φ. In other words, we have s(n0), e(n0) |= φ where it is obvious that 
e(n0) ∈ compatible(v(n)). Again, since n0 = node0(s(n), e(n), v(n), A), s(n) = s(n0) and v(n) = v(n0); therefore s(n), e(n0) |= φ

where e(n0) ∈ compatible(v(n)).
(⇐): Assume that s(n), e′ |= φ for some e′ ∈ compatible(v(n)), then there exists a strategy sA such that for all 
λ ∈ out(q, e′, sA, A) and i ≥ 0 : λ|Q [i], λ|En[i] |= ψ . We shall now prove that strategy(n, φ) returns true, i.e., equiv-
alently g-strategy(node0(s(n), e(n), v(n), A), φ) returns true. Let T = (V , E) be the infinite tree induced by all runs 
λ ∈ out(q, e′, sA, A), i.e., V = {λ[0, i] | λ ∈ out(q, e′, sA, A), i ≥ 0} and E = {(λ[0, i], λ[0, i + 1]) | λ ∈ out(s, η, sA, A)}. We also 
attach to each node λ[0, i] of T an element v(λ[0, i]) where

v(λ[0, i])(a, r) =
{

λ|En[i](a, r) if v(n)(a, r) �= arb

arb otherwise

Then, in the following, we cut T into a finite search tree which shows that g-strategy(node0(s(n), e(n), v(n), A), φ) returns 
true. Note that each edge in E corresponds to a join action of all agents. First, we repeatedly apply the following rule to 
prune the tree:

Case 3 If there is a node λ[0, k] in Tl such that ∃0 ≤ j < k : λ|Q [ j] = λ|Q [k] ∧ λ|En[ j] ≤ λ|En[k], then Tl+1 is constructed 
from Tl by replacing in the subtree Tl(λ[k]) by the node λ[k].

This step must yield a finite tree T ′ since for every infinite path in the original tree, there must be a state appearing 
infinitely often and the corresponding endowments must be non-decreasing. These paths then are always cut by (Case 3).
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Then, let T0 = T ′ , then Tl+1 is constructed from Tl as follows.

Case 4 If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q [ j] = λ|Q [k] ∧λ|En[ j] ≥ λ|En[k] and λ|En[ j] �= λ|En[k], then Tl+1
is constructed from Tl by replacing the subtree Tl(λ[ j]) by Tl(λ[k]), updating the values for λ[k′]|En and v(λ[0, k′])
for all k′ ≥ k in the subtree Tl(λ[k]) according to the values λ[ j]|En and v(λ[0, j]) and the costs of actions in 
Tl(λ[k]).

Case 5 If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q [ j] = λ|Q [k] and (v(λ[0, j])(a, r) = v(λ[0, k])(a, r) = arb or 
λ|En[ j](a, r) = λ|En[k](a, r) for all a ∈ A, r ∈ Res) and λ|En[ j](a, r) > λ|En[k](a, r) for some a ∈ A, r ∈ Res, then Tl+1
is constructed from Tl by replacing the subtree Tl(λ[ j]) by Tl(λ[k]), updating the values for λ[k′]|En and v(λ[0, k′])
for all k′ ≥ k in the subtree Tl(λ[k]) according to the values λ[ j]|En and v(λ[0, j]) and the costs of actions in 
Tl(λ[k]).

Case 6 If there is a node λ[0, k] in Tl such that ∃ j < k : λ|Q [ j] = λ|Q [k] ∧ v(λ[0, j]) ≤ v(λ[0, k]) ∧ v(λ[0, j]) �= v(λ[0, k]), 
then Tl+1 is constructed from Tl by replacing the value v(λ[0, k′]) for all nodes λ[0, k′] in the subtree Tl(λ[k]) as 
follows

v(λ[0,k′])(a, r) =
{

v(λ[0,k′])(a, r) if v(λ[0, j])(a, r) = v(λ[0,k])(a, r)

arb if v(λ[0, j])(a, r) < v(λ[0,k])(a, r)

Case 7 Otherwise, Tl+1 = Tl , i.e., no more change.

The construction stops when Tl+1 = Tl . Let the resulting tree Tl+1 = T ′′ .
For each node λ[0, i] in T ′′ , we define a node nλ[0,i] where: s(nλ[0,i]) = λ|Q [i], p(nλ[0,i]) = [λ|Q [0] · . . . · λ|Q [i − 1]], 

c(nλ[0,i]) = A and e(nλ[0,i]) = λ|En[i] and v(nλ[0,i]) = v(λ[0, i]). In the following, we show by induction on the height of 
T ′′(λ[0, i]) that g-strategy(nλ[0,i], φ) returns true.
Base case: Assume that λ[0, i] is a leaf of T ′′ , then it is a leaf from T ′′ and is the result of applying Case 3. Then, the 
condition of the if statement in lines 12–13 of Algorithm 5 is true, therefore, g-strategy(nλ[0,i], φ) returns true.
Induction step: Assume that λ[0, i] is not a leaf of T ′′ . Then the condition of the if statement (lines 2–3) is false, since 
s(n) |= alt(φ) (where n is from the input of this Lemma). The condition of the next if statement (lines 4–5) is also false, 
since otherwise T ′′ can be cut further by (Case 4). The condition of the third or fourth if statement (lines 6–7) is false since 
otherwise T ′′ can be cut further by (Case 5). Therefore, the algorithm must enter the second for loop. For α = sA(λ|Q [0, i]) ∈
dA(λ[i]) we have that, for every s′ ∈ out(λ|Q [i], α) with n′ = node(nλ[0,i], s′, α, A), there must be λ′[0, i + 1] in T ′ such that 
n′ = nλ′[0,i+1] . By the induction hypothesis, g-strategy(nλ′[0,i+1], φ) returns true. Thus, g-strategy(nλ[0,i], φ) also returns 
true.

Obviously, g-strategy(node0(s(n), e(n), v(n), A), φ) returns true since nλ[0] = node0(s(n), e(n), v(n), A).
The above proof can be adapted to the case φ = 〈 〈A〉 〉ζ Gψ by exchanging the role of v(n) and ζ . �
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