
Reasoning about Normative Update

Natasha Alechina
University of Nottingham

Nottingham, UK
nza@cs.nott.ac.uk

Mehdi Dastani
Utrecht University

Utrecht, The Netherlands
M.M.Dastani@uu.nl

Brian Logan
University of Nottingham

Nottingham, UK
bsl@cs.nott.ac.uk

Abstract
We consider the problem of updating a multi-agent
system with a set of conditional norms. A norm
comes into effect when its condition becomes true,
and imposes either an obligation or a prohibition on
an agent which remains in force until a state satis-
fying a deadline condition is reached. If the norm is
violated, a sanction is imposed on the agent. We de-
fine a notion of a normative update of a multi-agent
system by a set of conditional norms, and study the
problem of checking whether the agent(s) can bring
about a state satisfying a property without incurring
a specified number of sanctions.

1 Introduction
Norms have been widely proposed as a means of coordinat-
ing and regulating the behaviours of agents within a multi-
agent system (MAS). Norms can be viewed as standards of
behaviour which specify that certain states or sequences of
actions in a multi-agent environment are prohibited or incur
some sanction. For example, the designer of an electronic
marketplace may want to encourage registration before ex-
changing goods and timely payment for goods sold. Norms
can be implemented in a MAS environment through norm
enforcement or norm regimentation. Enforcement imposes
sanctions on bad states or behaviours, whereas regimentation
eliminates bad states and behaviours.

Norms can be implemented directly as constraints on ac-
tions (or action sequences) within a MAS environment. How-
ever, there are a number of reasons to separate the implemen-
tation of the environment as a set of (physical) behaviours
from the implementation of norms that control and coordi-
nate agents’ behaviours. One reason is that normative as-
pects of an environment typically change more frequently
than its physical aspects (e.g., possible actions). Another rea-
son for this separation of concerns is to support the devel-
opment and maintenance of environments in a modular and
reusable manner, by making the development and mainte-
nance of norms independent of the development and main-
tenance of the physical aspects of the environment. Thirdly,
enforced (non-regimented) norms are different from the phys-
ical constraints on actions typically expressed in action pre-
conditions, as norms can be violated. The violation of en-

forced norms incurs sanctions, and the type of sanction ap-
plied depends on the circumstances under which norms are
violated. Lastly, a separate implementation of norms makes
it easier to analyse the effect of updating the same physical
environment with different sets of norms. We call the addi-
tion of a set of norms to a MAS environment a normative
update of the environment.

A key problem in the design of normative MAS is whether
a proposed normative update will have the effect intended by
the designer of the system. Previous work on verifying prop-
erties of normative updates has considered only a relatively
simple view of norms where some actions or states are desig-
nated as violations.

In this paper, we focus on conditional norms with dead-
lines and sanctions [Tinnemeier et al., 2009], and present a
formal framework that allows us to reason about the effects
of a normative update of a MAS environment by a set of con-
ditional norms. Conditional norms are triggered (detached)
in certain states of the environment and have a temporal di-
mension specified by a deadline. The satisfaction or violation
of a detached norm depends on whether the behaviour of the
agent(s) brings about a specified state of the environment be-
fore a state in which the deadline condition is true. Norms can
be enforced by means of sanctions or they can be regimented
by disabling actions in specific states. We introduce two new
logics to reason about conditional norms, CTLS (CTL with
Sanctions) and ATLS (ATL with Sanctions), which allow
us to express properties such as ‘the agent(s) are unable to
bring about a state satisfying φ’ and ‘the agent(s) are unable
to bring about a state satisfying φ without incurring at least
sanctions Z’. Sanction and regimentation properties are ver-
ified by means of model checking. We prove that the com-
plexity of model-checking problems for CTLS and ATLS is
PSPACE.

2 Normative Update
Let Π be a finite set of propositional variables. Π is parti-
tioned into a set of physical atoms Πb and a set of sanction
atoms Πs. The distinguished atom san⊥ ∈ Πs denotes the
sanction in regimented norms (that is, norms which cannot be
violated by agents).

Definition 1 (Physical Transition System) A physical tran-
sition system is a tuple M = (S,R, V), where S is a finite,

non-empty set of states, R ⊆ S × S is a transition relation,
and V is a propositional valuation S −→ 2Π.

Intuitively, M describes the computational behaviour of a
(multi) agent system. R corresponds to agents executing ac-
tions, and actions have preconditions and effects specified in
terms of physical atoms that are satisfied by the transitions.

Before we can define norms and normative update, we need
some temporal logic preliminaries. Given a physical transi-
tion system M = (S,R, V), a path through M is a sequence
s0, s1, s3, . . . of states such that siRsi+1 for i = 0, 1, A
fullpath is a maximal path and a run of M is a fullpath which
starts from a state sI ∈ S designated as the initial state of M .
We denote fullpaths by ρ, ρ′, . . . , and the state at position i
on ρ by ρ[i]. For a state s ∈ S, the tree rooted at s is the in-
finite tree T (s), obtained by unfolding M from s (the nodes
of T are finite paths starting from s ordered by the prefix re-
lation). T (M) = T (sI) is the computation tree of M . Note
that branches of T (M) are runs of M .

To make the notions of norm violation, enforcement and
update precise, we use Computational Tree Logic with Past
(CTL∗ + Past), see, e.g., [Schnoebelen, 2003]. The syntax
of CTL∗ + Past formulas is defined as follows:

p ∈ Π | ¬φ | φ ∧ ψ | Xφ | φUψ | X−1φ | φSψ | Eφ

where X means next state, X−1 means previous state, U
stands for until, S for since, and E for ‘exists a run’. The
truth definition for formulas is given relative to T (M), a run
ρ and the state at position i on ρ:

T (M), ρ, i |= p iff p ∈ V (ρ[i])
T (M), ρ, i |= ¬φ iff T (M), ρ, i 6|= φ

T (M), ρ, i |= φ∧ψ iff T (M), ρ, i |= φ and T (M), ρ, i |= ψ

T (M), ρ, i |= Xφ iff T (M), ρ, i+ 1 |= φ

T (M), ρ, i |= φUψ iff ∃j ≥ i such that T (M), ρ, j |= ψ
and ∀k : i ≤ k < j, T (M), ρ, k |= φ

T (M), ρ, i |= X−1φ iff T (M), ρ, i− 1 |= φ

T (M), ρ, i |= φS ψ iff ∃j ≤ i such that T (M), ρ, j |= ψ
and ∀k : i ≥ k > j, T (M), ρ, sk |= φ

T (M), ρ, i |= Eφ iff for some run ρ′ which is identical to ρ
on the first i indices, T (M), ρ′, i |= φ.

Fφ (some time in the future) is defined as >Uφ, Gφ (always
in the future) is defined as ¬F¬φ.

Definition 2 (Norms) Let cond, φ, d be boolean combi-
nations of propositional variables from Πb and san ∈
Πs. A conditional obligation is represented by a tuple
(cond,O(φ), d, san) and a conditional prohibition is repre-
sented by a tuple (cond, P (φ), d, san). A norm set N is a set
of conditional obligations and conditional prohibitions.

Conditional norms are evaluated on runs of the physical tran-
sition system. A conditional norm n = (cond, Y (φ), s, san),
where Y is O or P , is detached in a state satisfying its con-
dition cond. Detached norms persist as long as they are not
obeyed or violated, even if the triggering condition of the cor-
responding conditional norm does not hold any longer. A de-
tached obligation (cond,O(φ), d, san) is obeyed if no state

satisfying d is encountered before execution reaches a state
satisfying φ, and violated if a state satisfying d is encountered
before execution reaches a state satisfying φ. Conversely,
a detached prohibition (cond, P (φ), d, san) is obeyed if no
state satisfying φ is encountered before execution reaches a
state satisfying d, and violated if a state satisfying φ is en-
countered before execution reaches a state satisfying d. If
a detached norm is violated in a state s, the sanction corre-
sponding to the norm is applied (becomes true) in s. We say
a detached norm is annulled in a state s′ immediately after
a state s in which the norm is obeyed or violated, unless the
same norm is detached again in s′. Note that given an origi-
nal physical transition system, we cannot say whether a norm
is violated in a given state s; to determine that, we need to
know the path taken to reach s (e.g., whether any norms were
detached in the past), and there may be more than one path to
s. This is the reason why conditional norms are evaluated on
runs of the system.

Definition 3 (Norm Violation) A state ρ[i] violates a condi-
tional obligation (cond,O(φ), d, san) on run ρ in T (M) iff

T (M), ρ, i |= d∧¬φ∧(((¬φ∧¬d)S (cond∧¬φ∧¬d))∨cond)

ρ[i] violates a conditional prohibition (cond,P (φ),d,san) iff

T (M), ρ, i |= φ∧¬d∧(((¬φ∧¬d)S (cond∧¬φ∧¬d))∨cond)

We distinguish two kinds of sanctions: regimentation sanc-
tions and resource sanctions. Regimentation sanctions arise
in the context of wholly or partially regimented normative
systems, where the normative system enforces norms to en-
sure that certain behaviours never occur. If a norm labels a
state with the distinguished sanction atom san⊥, then the run
containing this state is removed from the set of runs of the
system by the normative update. Resource sanctions, on the
other hand, arise in the context of (wholly or partially) unreg-
imented normative systems, which treat sanctions essentially
like fines or taxes. Such sanctions penalize rather than elimi-
nate certain execution paths by reducing the resources of the
agent. An undesirable state (from the point of view of the
system designer) may or may not be achievable by an agent
(or agents) depending on the resources the agent is able or
willing to commit to achieving it.

The normative update of a physical transition system is de-
fined by applying sanctions to violating states in the execution
paths of the system, and removing regimented paths.
Definition 4 (Norm Enforcement) Let N be a norm set,
and n = (cond, Y (φ), d, san) ∈ N be a norm (for Y ∈
{O,P}). The norm n is enforced on a run ρ when, for every
i, ρ[i] violates n iff ρ, i |= san. The norm set N is enforced
on ρ iff all norms in n ∈ N are enforced on ρ.

Given a physical transition system M and a set of norms
N , a normative update of M with N , denoted by MN , is
realized by updating the tree T (M) of M with the norm set
N .

Definition 5 (Normative Update) Let M = (S,R, V) be a
finite physical transition system with initial state sI and N a
finite set of conditional obligations and prohibitions. A nor-
mative update of M with N , MN , is T (M) where all norms

from N are enforced on all runs. In other words, in each
tree node s′, V N (s′) contains sanction atoms for all norms
violated in s′. Paths which contain a state satisfying the dis-
tinguished sanction atom san⊥ are removed from MN .

We assume that MN is non-empty, i.e., that regimentation
does not remove all possible paths from the system (cf the
‘reasonableness assumption’ in [Ågotnes et al., 2010]).

3 CTLS
We now show how to reason about the effects of updating a
physical transition system with norms. To simplify the pre-
sentation, in this section we first consider the case of a single
agent, and consider the multi-agent case in Section 4. We use
an extension of Computational Tree Logic CTL [Clarke et
al., 1986] with sanction bounds which we call CTLS .

To express properties of a normative update, we need to be
able to talk about the number of sanctions applied on a run.
For simplicity, we assume that each norm i has its own dis-
tinct sanction proposition sani, apart from regimented norms
which all have san⊥ as the sanction atom. To say that a path
contains no occurrences of san0, at most 2 occurrences of
san1, and at most infinitely many occurrences of san2 we
will use sanction bound expressions which are multisets of
the form {san1, san1,∞∗ san2}. We will use abbreviations
0 for the multiset which contains 0 occurrences of any sanc-
tions, and ∞ for the multiset where the multiplicity of each
sanction is∞. Below, we use set notation for multisets with
the obvious semantics. In particular, the union of two multi-
sets Z1 and Z2 is a multiset, where the multiplicity of each
element is the sum of its multiplicities in Z1 and Z2, and
n +∞ = ∞ for any multiplicity n. We also use ≤ to com-
pare two multisets, again as an obvious generalisation of set
inclusion (Z1 ≤ Z2 iff the multiplicity of each element in Z1

is less then or equal to its multiplicity in Z2, with n ≤ ∞ for
any multiplicity n).

The language of CTLS is defined by:

p ∈ Π | ¬φ | φ ∧ φ | E≤ZXφ | E≤ZφUφ | E≤ZGφ

where Z is a multiset of sanction atoms (sanction bound).
E≤Z means ‘there exists a path of sanction cost at most Z’.
We define E≤ZFφ =df E

≤Z>Uφ. Note that CTL operators
are a special case of CTLS operators with an infinite bound
for all sanctions.

We use the abbreviation sanctions(s) for a state s ∈ S
to mean the set of sanction atoms in V (s). (Recall that, in a
tree, each s is on a unique run.) For a run ρ, sanctions(ρ) =
∪isanctions(ρ[i]) is a multiset of sanction atoms.

The truth of CTLS formulas is defined relative to a tree
model T (intuitively, a normative update) and a state in T :
T, s |= E≤ZXφ iff there a fullpath ρ′ with ρ′[0] = s, such

that T, ρ′[1] |= φ and sanctions(ρ′) ≤ Z
T, s |= E≤ZφUψ iff there exists a fullpath ρ′ with ρ′[0] = s,

such that for some n ≥ 0, T, ρ′[n] |= ψ and for every i,
i < n, T, ρ′[i] |= φ and sanctions(ρ′) ≤ Z

T, s |= E≤ZGφ iff there exists a fullpath ρ′ with ρ′[0] = s,
such that for every i, T, ρ′[i] |= φ and sanctions(ρ′) ≤
Z.

In general, two kinds of properties of a normative update
are of interest: liveness properties and safety properties. Live-
ness properties check that, following a normative update, de-
sirable states (from the point of view of the system designer)
are still possible and can be achieved without an agent in-
curring sanctions, or with some ‘admissible’ number of sanc-
tions. For example, if φ is a desirable state, then E≤0F φ
is a liveness property which says that there is an execution
path which achieves φ and no state of this path has a sanc-
tion applied. Conversely, safety properties check that it is
impossible for an agent to reach states where some undesir-
able property holds without incurring some minimum level of
sanctions. For example, if ψ is an undesirable property, then
the formula ¬E≤sanFψ says that there is no execution path
where ψ is reachable and the set of sanctions is less than san.
So the agent may be able to achieve ψ, but it will have to pay
more than san.

Model-Checking
The model-checking problem for a normative update of a sin-
gle agent physical transition system takes as inputs a physical
transition system M = (S,R, V) with initial state sI ∈ S, a
finite set of conditional norms N , and a formula φ of CTLS .
It returns true if MN , sI |= φ, and false otherwise.

Theorem 1 The model-checking problem for a normative
update of a single agent physical transition system is in
PSPACE.

Proof. We give a non-deterministic algorithm for check-
ing whether for an arbitrary s, MN , s |= φ, which re-
quires space polynomial in |S|, |N | and |φ|. This shows
that the model-checking problem is in NPSPACE. Since
NPSPACE=PSPACE, it is also in PSPACE.

The algorithm is as follows. Assume we have a set of sub-
formulas of φ closed under single negations, ordered in in-
creasing order of complexity. We label states with subformu-
las in φ in order. For subformulas which do not start with
a path quantifier, the algorithm is as for propositional logic
(constant time), and for subformulas which start with a path
quantifier with an infinite bound, the algorithm is as for CTL.
If we have a subformula of the form E≤Zψ, then we guess
a run ρ which goes through s, and continues infinitely (note
that such a run can still be represented using space polyno-
mial in |S|) such that the part of ρ starting in s satisfies ψ,
accumulates no more than Z sanctions, and does not violate
any norms which result in the sanction san⊥. Note that to
check the number of sanctions incurred in the future of s, we
need to know what happens on the run before s. �

Theorem 2 The model-checking problem for a normative
update of a single agent physical transition system is
PSPACE-hard.

Proof. The proof is by reduction of the QSAT (Satisfia-
bility of Quantified Boolean Formulas) problem (which is a
PSPACE-complete problem) to the model-checking problem
for a normative update. The idea of the proof comes from the
PSPACE-completeness proof for ATL+ with perfect recall in
[Bulling and Jamroga, 2010].

The QSAT problem takes as an input a formula of the form
∃p1∀p2 . . . Qpnφ where pi are propositional variables, the

quantifier for pi is ∃ if i is odd and ∀ if i is even, and φ is
a propositional formula in negation normal form (negations
only apply to propositional variables).

For each quantified boolean formula ψ =
∃p1∀p2 . . . Qpnφ, we are going to construct a structure
Mψ which encodes conditions for its satisfiability: it starts
with transitions corresponding to selection of truth values for
the variables, continues with a parse tree of φ, then evaluates
literals at the leaves of the parse tree and finally transits to a
‘success’ or ‘failure’ state. We are also going to introduce a
set of norms N which prohibit evaluating pi to true and false
simultaneously. Then we reduce the problem of whether
ψ is true to the problem of whether an update of Mψ with
N satisfies a CTLS formula ψ′ which says that there is a
sanction-free way to traverse the structure which ends in the
success state. The formula ψ′ is polynomial in the size of ψ,
as are Mψ and N .

The structure Mψ and formula ψ′ use the following propo-
sitional variables: for each pi in ψ, pi itself and also a special
variable notpi (the first one becomes true if pi is assigned the
value true, and the second if it is assigned false). We also
need a propositional variable yes which holds in the success
state.
Mψ consists of three ‘sections’. In the first section, for ev-

ery variable pi in φ, we have a state si from which there are
two transitions to states si> and si⊥; in si> pi is true, and in
si⊥ notpi is true. From each of these states, there is a tran-
sition to si+1. From the last two states in the value selection
section, sn> and sn⊥, there is a transition to the first state sφ
in the second (parse tree) section. From each state sχ in this
section, there are n transitions to the states corresponding to
the arguments of the main connective of χ. Unlike the parse
tree assumed in [Bulling and Jamroga, 2010], we are building
an and-or tree: at one level there are n conjuncts, at the next
level m disjuncts, etc. When we start hitting the literals, we
add a dummy single transition to the next state to make sure
that the and-or tree has the same depth on all branches. The
last level of states in the parse tree section are states corre-
sponding to literals pi or ¬pi: spi

or s¬pi
. The last section

of the model is as follows. From a state spi
corresponding to

a positive literal, there are two transitions to states s′i> and
s′i⊥ which satisfy pi and notpi respectively, and there is a
transition from s′i> to the syes state which satisfies yes and a
transition from s′i⊥ to the sno state. From a state s¬pi

corre-
sponding to a negative literal, there are also two transitions to
states s′i> and s′i⊥ which satisfy pi and notpi respectively,
but this time there is a transition from s′i> to the sno state
and a transition from s′i⊥ to the syes state. Both syes and sno
have transitions to themselves.

The norms prohibit going through a s′i⊥ state after go-
ing through a si> state. This intuitively corresponds to
prohibiting assigning first true and then false to pi. Sim-
ilarly they prohibit going through a s′i> state after going
through a si⊥ state. For each pi we have two prohibitions,
(pi, P (notpi), yes, san+

i) and (notpi, P (pi), yes, san−i).
Finally, the formula ψ′ is built as follows. It starts with nor-

mal CTL quantifiers (quantifiers of sanction bound infinity)
which say that there exists an assignment to p1 such that for
all assignments to p2 etc.: EX EX AX EX . . . (the second

EX after each quantifier describes the transition from si> or
si⊥ to si+1 state). Then it does the same for the and-or tree
section ofMψ: for ‘and’ levels it usesAX , and for ‘or’ levels
it uses EX . Finally it says E≤0Xyes, namely there is a way
of making φ true without violating the norms. �

Translation to CTL∗ + Past
Non-deterministic algorithms are primarily of theoretical in-
terest. Below we give a more concrete algorithm for model-
checking CTLS by reducing the problem to model-checking
CTL∗ + Past. It involves a straightforward translation of
sanction bounds into CTL∗ + Past formulas which encode
information about sanctions. We can then apply a model-
checking algorithm for CTL∗ + Past.

Before we state the translation, we introduce an expanded
representation for sanction bounds. Namely, for a sanction
bound Z, the expanded representation e(Z) is of the form
n1∗san1, . . . , nm∗sanm where ni is the multiplicity of sani
and a sanction for each non-regimented norm in N occurs
unless its multiplicity is ∞. In other words, if sani 6∈ Z,
then it occurs in e(Z) with ni = 0, and if san occurs with
multiplicity∞, we do not include it in e(Z).

The translation from CTLS to CTL∗ + Past only affects
path operators with sanction bounds:

tr(E≤Zψ) = E(tr(ψ) ∧
¬φsan⊥ ∧ ¬φ(n1+1)∗san1 ∧ . . . ∧ ¬φ(nm+1)∗sanm

)

where e(Z) = n1 ∗ san1, . . . , nm ∗ sanm. Each formula
φ(ni+i)∗sani

is a CTL∗+Past formula which says that sanc-
tion sani is applied ni + 1 times or more; its negation there-
fore states that sanction sani is applied at most n times. Its
precise form depends on whether the corresponding norm is
an obligation or a prohibition. φsan⊥ states that some regi-
mented norm has been violated on the run.

On any run, for there to be (at least) ni + 1 violations of a
conditional obligation (cond,O(p), d, sani) in the future of
a state sj , there should be either at least ni + 1 violations
from obligations detached in sj or in future states sk, k >
j, or one of the obligations was detached in the past (in a
state si, i < j) and the remaining ni violations result from
obligations detached in the future. Note that in both cases, all
the violations (and hence sanctions) occur in the current state
or in future states. The case in which all ni + 1 norms are
detached in the current or future states can be expressed as a
formula φfuture

(ni+1)∗sani
where

φfuture
(ni+1)∗sani

=df F (cond ∧ (¬pU(d ∧ Xφfuture
ni∗sani

)))

and
φfuture
sani

=df F (cond ∧ (¬pUd))
The case in which one instance of the norm was detached in
the past and violated in the future of sj (note that there can
be at most one such instance) can be expressed as a formula
φpast
sani

where

φpastsani
=df ((¬p ∧ ¬d)S cond) ∧ (¬pUd)

and the formula expressing that ni norms are detached in the
current and/or future states is just φfuture

(ni)∗sani
. The complete

formula which says that the obligation is violated at most ni
times is then:

¬(φfuture
(ni+1)∗sani

∨ (φpast
sani
∧ φfuture

ni∗sani
))

Similarly for conditional prohibitions, we need to write a
formula saying that (cond, P (q), d, sani) is detached and vi-
olated at least ni + 1 times in the current and/or future states

φfuture
(ni+1)∗sani

=df F (cond ∧ (¬dU(q ∧ ¬d ∧ Xφfuture
ni∗sani

)))

where
φfuture
sani

= F (cond ∧ (¬dU(q ∧ ¬d)))
and a formula which says that it is detached once in the past
and violated in the current or a future state:

φpast
sani

=df ((¬q ∧ ¬d)S cond) ∧ ¬dUq
The complete formula which says that the prohibition vio-
lated at most ni times has the same form as for obligations.

Finally, φsan⊥ is defined as a disjunction which says that
one of the regimented norms is violated at least once.

If the sanction bound is written as a multiset (i.e.,
{san1, san1, san2}) the translation above is polynomial in
the original formula and in |N |, and CTL∗ + Past model-
checking is PSPACE-complete [Schnoebelen, 2003]. In prac-
tice this means that a concrete model-checking algorithm will
be exponential in the formula size. For the general case,
when several non-regimented norms may have the same sanc-
tion atom, the approach above will result in a translation
which is in the worst case exponential in the sanction bound.
This would result in a double exponential in the formula if
CTL∗ + Past model-checking is used. However, translation
into CTL∗ + Past is not the only way of defining a con-
crete model-checking procedure for normative updates. It is
possible to give an algorithm for the general problem (i.e.,
where multiple norms can result in the same sanction atom)
that is exponential in the sanction bound, but polynomial in
the number of states and edges in M . The algorithm extends
a standard CTL algorithm with an additional pass over M
to compute a labelling that records all non-dominated sanc-
tion bounds on paths from each state. We do not include the
algorithm in the paper due to space limitations.

4 ATLS
In this section we consider normative updates of multi-agent
systems. We assume that a physical multi-agent system is
represented as a concurrent game structure (CGS).

To express properties such as ‘a group of agents C cannot
maintain property φ unless they incur sanction san at least
once’ we extend the syntax of Alternating Time Temporal
Logic ATL [Alur et al., 2002] with sanction bounds. We call
the resulting logic ATLS . The syntax of ATLS is defined
relative to a set of propositional variables Π, a finite set of
agents A, and a set of sanction atoms Πs ⊆ Π as follows:

p ∈ Π | ¬φ | φ∧ψ | 〈〈C〉〉≤ZXφ | 〈〈C〉〉≤ZGφ | 〈〈C〉〉≤ZφUψ
where C ⊆ A and Z is a multiset of atoms from Πs. Intu-
itively, 〈〈C〉〉≤Zγ means ‘the group of agentsC has a strategy,
all executions of which incur at most Z sanctions and satisfy
the formula γ, whatever the other agents in A \ C do’.

Definition 6 (Concurrent Game Structure) A Concurrent
Game Structure (CGS) is a tuple M = (S, V, a, δ) which is
defined relative to a set of agents A = {1, . . . , n} and a set
of propositional variables Π, where:
• S is a non-empty set of states
• V : S → ℘(Π) is a function which assigns each state in
S a subset of propositional variables
• a : S×A → N is a function which indicates the number

of available moves (actions) for each player i ∈ A at a
state s ∈ S such that a(s, i) ≥ 1. At each state s ∈ S,
we denote the set of joint moves available for all players
in A by A(s). That is

A(s) = {1, . . . , a(s, 1)} × . . .× {1, . . . , a(s, n)}

• δ : S × N|A| → S is a partial function where δ(s,m)
is the next state from s if the players execute the move
m ∈ A(s).

In what follows, we assume norms apply to individual
agents. The definition of a normative system therefore does
not change, except that each norm now has an extra parame-
ter representing the agent to whom the norm applies: a con-
ditional obligation for agent i is represented by the tuple
(cond,O(i, φ), d, san) and a conditional prohibition is repre-
sented by the tuple (cond, P (i, φ), d, san) where i ∈ A. As
before, we assume that each norm has a unique sanction atom.
We do not explicitly model group norms: rather we assume
that each group obligation and prohibition is decomposed into
individual obligations and prohibitions for the agents in the
group, and that the sanction associated with the group norm
is automatically decomposed into sanctions associated with
the individual norms.
Definition 7 (Move) Given a CGS M and a state s ∈ S,
a move (or joint action) for a coalition C ⊆ A is a tuple
σC = (σi)i∈C such that 1 ≤ σi ≤ a(s, i).

By AC(s) we denote the set of all moves for C at state s.
Given a move m ∈ A(s), we denote by mC the actions exe-
cuted byC,mC = (mi)i∈C . The set of all possible outcomes
of a move σC ∈ AC(s) at state s is defined as follows:
out(s, σC) = {s′ ∈ S | ∃m ∈ A(s) : mC = σC∧s′ = δ(s,m)}
Definition 8 (Strategy) Given a CGS M , a strategy for a
subset of players C ⊆ A is a mapping FC which associates
each finite path sI , . . . , s to a move in AC(s).

A fullpath ρ is consistent withFC iff for all i ≥ 0, ρ[i+1] ∈
out(ρ[i], FC(ρ[0], . . . , ρ[i])). We denote by out(s, FC) the
set of all such fullpaths ρ starting from s, i.e. where ρ[0] = s.

For each run ρ, as before we can define what it means for
a norm to be enforced, and which states on a run are assigned
sanction atoms. For an agent i and a path ρ, we denote the
multiset of sanctions applied to i in the states on this path
by sanctions(i, ρ). For a coalition C, sanctions(C, ρ) =
∪i∈Csanctions(i, ρ).
Definition 9 (Normative Update) Given a CGS M and a fi-
nite set of norms N , a normative update of M with N , MN ,
is a tree unravelling of M where all the norms in N are en-
forced (sanction atoms added to the appropriate states and
paths containing states with the san⊥ atom are removed).

Definition 10 (Z-Strategy) Given a sanction bound Z, an
execution path ρ ∈ out(s, FC) isZ-consistent with FC in s iff
sanctions(C, ρ) ≤ Z. We denote by out(s, FC , Z) the set of
all Z-consistent paths in out(s, FC) starting in s. A strategy
FC is a Z-strategy in s iff out(s, FC) = out(s, FC , Z).

Given a normative update of a CGS,MN = (SN , V N , aN ,
δN), the truth definition for ATLS is:

• MN , s |= 〈〈C〉〉≤ZXφ iff there exists a startegy FC
which is a Z-strategy in s such that for all ρ ∈
out(s, FC), MN , ρ[1] |= φ

• MN , s |= 〈〈C〉〉≤ZGφ iff there exists a strategy FC
which is a Z-strategy in s such that for all ρ ∈
out(s, FC), MN , ρ[i] |= φ for all i ≥ 0

• MN , s |= 〈〈C〉〉≤ZφUψ iff there exists a strategy FC
Z-strategy in s such that for all ρ ∈ out(s, FC), there
exists i ≥ 0 such that MN , ρ[i] |= ψ and MN , ρ[j] |= ψ
for all j ∈ {0, . . . , i− 1}

In ATLS , we can express liveness and safety properties of
normative updates of multi-agent systems, for example (live-
ness) that a group of agents can enforce φ while incurring at
most sanction san, or (safety) that a group of agents cannot
enforce φ while incurring less than 10 times san.

Model-Checking
The model-checking problem for a normative update to a
physical multi-agent system takes as inputs the physical sys-
tem M = (S, V, a, δ) with initial state sI ∈ S, a finite set of
conditional norms N and a formula φ of ATLS , and returns
true if MN , sI |= φ, false otherwise.

Theorem 3 The model-checking problem for a normative
update of a multi-agent physical system is in PSPACE.

Proof. The proof is very similar to the proof for CTLS . To
check whether a formula of the form 〈〈C〉〉≤Zφ is true in a
state s, we guess C’s Z-strategy from that state, prune the
structure to contain only the moves which are consistent with
this strategy, and then check whether a CTL formula which
says that φ is true on all paths from s is true in the resulting
structure. �

We provide a concrete model-checking algorithm by trans-
lating into ATL∗ + Past. ATL∗ + Past is defined as for
CTL∗ + Past, but with coalition modalities instead of path
quantifiers. The model-checking problem for ATL∗ + Past
is decidable [Mogavero et al., 2010]. We can express in
ATL∗ + Past that a path contains no more that Z sanction
states, where the set of norms is restricted to norms which ap-
ply to a particular set of agents inC. The translation as before
only affects modalities with sanction bounds:

tr(〈〈C〉〉≤Zψ) = 〈〈C〉〉(tr(ψ) ∧
¬φsan⊥ ∧ ¬φ(n1+1)∗san1 ∧ . . . ∧ ¬φ(nm+1)∗sanm

)

where e(Z) = n1 ∗ san1, . . . , nm ∗ sanm, φ(ni+i)∗sani
is a

formula which says that sanction sani is applied ni + 1 or
more times, and φsan⊥ is a formula which says that one of
the regimented norms is violated at least once.

5 Related Work
The conditional norms we consider in this paper have some
similarities with those proposed in [Dignum et al., 2004;
Boella et al., 2008]. In [Dignum et al., 2004] obligations with
deadlines are characterised in CTL using a special violation
constant. However, in contrast to our norms, the obligations
in [Dignum et al., 2004] are not conditional and do not have
sanctions. In [Boella et al., 2008], regulative norms (with-
out sanctions) are used to specify obligations with deadlines
that are detached under specific conditions. In contrast to our
work they do not evaluate norms in a temporal logic setting
or consider verification.

The approach presented in this paper extends work on nor-
mative environment programming [Tinnemeier et al., 2009;
Dastani et al., 2013], and can be used to analyze and reason
about normative environment programs as specified in [Tin-
nemeier et al., 2009] and to verify that a normative update
guarantees desirable system properties. In [Dastani et al.,
2013], norms are represented by counts-as rules where the
consequent consists of a violation atom. The norms include
obligations and prohibitions, but lack conditions or deadlines.
As such, they can only be used to characterize violation states
(and not violation runs).

There is also a body of work on verification of norma-
tive environment programs, e.g., [Astefanoaei et al., 2009;
Dennis et al., 2010]. In these approaches, norms are repre-
sented by counts-as rules characterizing violated states. The
norms do not have conditions or deadlines, and sanctions are
not modelled by multisets, so different violations of a norm
cannot be distinguished.

Another strand of work related to our approach is [Ågotnes
et al., 2010], where the notion of a robust normative system
is introduced. We believe that the form of normative update
presented in [Ågotnes et al., 2010] can be modelled in our
approach by considering only regimented norms.

The framework presented in [Knobbout and Dastani, 2012]
introduces different types of norm compliance and allows rea-
soning about agent behaviours under the assumption that the
agents behave according to a specific norm compliance type.
However they do not consider norm enforcement.

6 Conclusions
We define the notion of a normative update of a physical sys-
tem with respect to a set of conditional norms with sanctions
and deadlines. Our notion of a normative update is more com-
plex than previous work on regimentation of a physical sys-
tem or marking states or edges as violations. We extend CTL
(for single agents) and ATL (for multiple agents) with sanc-
tion bounds on paths to reason about the properties of such
normative updates. In particular, we can say how many sanc-
tions the agents must incur to achieve some property. We
show how to reduce the problem of verifying properties of a
normative update to existing model-checking problems, and
characterize its computational complexity. In future work, we
plan to extend our approach to allow norms to be assigned to
coalitions of agents and, moreover, redefine the enforcement
of norms to allow distribution of sanctions among members
of a coalition when a norm is violated by the coalition.

References
[Ågotnes et al., 2010] Thomas Ågotnes, Wiebe van der

Hoek, and Michael Wooldridge. Robust normative sys-
tems and a logic of norm compliance. Logic Journal of the
IGPL, 18(1):4–30, 2010.

[Alur et al., 2002] Rajeev Alur, Thomas Henzinger, and
Orna Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):672–713, 2002.

[Astefanoaei et al., 2009] L. Astefanoaei, M. Dastani, J.J.
Meyer, and F. de Boer. On the semantics and verification
of normative multi-agent systems. International Journal
of Universal Computer Science, 15(13):2629–2652, 2009.

[Boella et al., 2008] G. Boella, J. Broersen, and L. van der
Torre. Reasoning about constitutive norms, counts-as con-
ditionals, institutions, deadlines and violations. In Pro-
ceedings of the International Conference on Principles
and Practice of Multi-Agent Systems (PRIMA), pages 86–
97, 2008.

[Bulling and Jamroga, 2010] Nils Bulling and Wojciech
Jamroga. Verifying agents with memory is harder than
it seemed. In Wiebe van der Hoek, Gal A. Kaminka,
Yves Lespérance, Michael Luck, and Sandip Sen, editors,
Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
pages 699–706. IFAAMAS, 2010.

[Clarke et al., 1986] E. M. Clarke, E. A. Emerson, and A. P.
Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[Dastani et al., 2013] Mehdi Dastani, Davide Grossi, and
John-Jules Meyer. A logic for normative multi-agent pro-
grams. Journal of Logic and Computation, special issue
on Normative Multiagent Systems, 23(2):335–354, 2013.

[Dennis et al., 2010] Louise A. Dennis, Nick A. M. Tin-
nemeier, and John-Jules Ch. Meyer. Model checking nor-
mative agent organisations. In Jürgen Dix, Michael Fisher,
and Peter Novák, editors, Computational Logic in Multi-
Agent Systems - 10th International Workshop, CLIMA X,
Hamburg, Germany, September 9-10, 2009, Revised Se-
lected and Invited Papers, volume 6214 of Lecture Notes
in Computer Science, pages 64–82. Springer, 2010.

[Dignum et al., 2004] F. Dignum, J. Broersen, V. Dignum,
and J.-J. C. Meyer. Meeting the deadline: Why, when and
how. In Proceedings of the International Workshop on For-
mal Approaches to Agent-Based Systems (FAABS), pages
30–40, 2004.

[Knobbout and Dastani, 2012] Max Knobbout and Mehdi
Dastani. Reasoning under compliance assumptions in nor-
mative multiagent systems. In Wiebe van der Hoek, Lin
Padgham, Vincent Conitzer, and Michael Winikoff, ed-
itors, Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS
2012), pages 331–340. IFAAMAS, 2012.

[Mogavero et al., 2010] Fabio Mogavero, Aniello Murano,
and Moshe Y. Vardi. Relentful strategic reasoning in
alternating-time temporal logic. In Edmund M. Clarke and
Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning - 16th International Con-
ference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,
Revised Selected Papers, volume 6355 of Lecture Notes in
Computer Science, pages 371–386. Springer, 2010.

[Schnoebelen, 2003] Ph. Schnoebelen. The complexity
of temporal logic model checking. In Philippe Bal-
biani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Za-
kharyaschev, editors, Advances in Modal Logic 4, pages
393–436. King’s College Publications, 2003.

[Tinnemeier et al., 2009] Nick Tinnemeier, Mehdi Dastani,
John-Jules Meyer, and Leon van der Torre. Program-
ming normative artifacts with declarative obligations and
prohibitions. In Proceedings of the IEEE/WIC/ACM In-
ternational Conference on Intelligent Agent Technology
(IAT’09), pages 69–78, 2009.

