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Abstract. Rule-based systems are rapidly becoming an important component
of ‘mainstream’ computing technologies, for example in business process mod-
elling, the semantic web, sensor networks etc. However, while rules provide a
flexible way of implementing such systems, the resulting system behaviour and
the resources required to realise it can be difficult to predict. In this paper we
consider the verification of system behaviour and resource requirements for dis-
tributed rule-based systems. More specifically, we consider distributed problem-
solving in systems of communicating rule-based systems, and ask how much time
(measured as the number of rule firings) and message exchanges does it take the
system to find a solution. We show how standard model-checking technology can
be used to verify resource requirements for such systems, and present prelimi-
nary results which highlight complex tradeoffs between time and communication
bounds.

1 Introduction

Rule-based approaches offer significant advantages to the application developer: their
focus on the declarative representation of small, relatively independent, knowledge
units makes it easier for developers and even end users to rapidly develop and main-
tain applications — in many cases the information required to develop the application
is already codified in terms of rules expressed in natural language, e.g., describing a
business process.

However, while the adoption of rule-based approaches brings great benefits in terms
of rapid development and ease of maintenance, they also present new challenges to ap-
plication developers, namely how to ensure the correctness of rule-based designs (will
a rule-based system produce the correct output for all legal inputs), termination (will a
rule-based system produce an output at all) and response time (how much computation
will a rule-based system have to do before it generates an output).

These problems become even more challenging in the case of distributed rule-based
systems, where the system being designed or analysed consists of several communicat-
ing rule-based programs which exchange information via messages, e.g., a semantic
web application or a sensor network. A communicated fact (or sensor reading) may be
added asynchronously to the state of a RBS while the system is running, potentially
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triggering a new strand of computation which executes in parallel with current process-
ing. To be able to provide response time guarantees for such systems, it is important to
know how long each rule-based system’s reasoning is going to take. In other situations,
for example a rule-based system running on a PDA or other mobile device, the number
of messages exchanged may be a critical factor.

Verifying properties such as correctness, termination and resource requirements of
rule-based systems is extremely challenging. Ironically, the very features which make
rule-based systems attractive from a development point of view—the separation of the
application logic and execution engine and the ease with which rules can be added or
modified (often by end users)—make it hard to predict the overall behaviour of the
system or the implications of changing a particular rule. In this paper, we present a
framework for the automated verification of time and communication requirements in
distributed rule-based systems. We consider distributed problem-solving in systems of
communicating rule-based systems, and ask how much time (measured as the number
of rule firings) and message exchanges does it take the system to find a solution. We
show how standard model-checking technology can be used to solve such problems.
Using simple examples, we show how the Mocha model checker [1] can be used to
analyse trade-offs between time and communication bounds in a distributed rule-based
system.

The structure of the paper is as follows. In section 2 we introduce a simple model of
the kinds of distributed rule-based system we want to verify. We describe the encoding
of such systems in the input language of Mocha model-checker in section 3. Model-
checking experiments are described in section 4. We discuss related work in 5 and
conclude in section 6.

2 Distributed rule-based systems

In this section, we introduce a model of a distributed rule-based system and the mea-
sures of time and communication resources required to solve a distributed reasoning
problem.

We assume that the system consists of n individual rule-based systems or nodes,
where n ≥ 1. Each node is identified by a value in {1, . . . , n}, and we use variables
i and j over {1, . . . , n} to refer to nodes. Each node i has a program, consisting of
propositional Horn clause rules, and a working memory, which contains facts (propo-
sitions). The restriction to propositional rules is not critical: if the rules do not contain
functional symbols and we can assume a fixed finite set of constant symbols, then any
set of first-order Horn clauses and facts can be encoded as propositional formulas. If a
node i has a rule A1, . . . , An → B, the facts A1, . . . , An are in i’s working memory
and B is not in i’s working memory in state s, then i can fire the rule, adding B to i’s
working memory in the successor state s′.

In addition to firing rules, nodes can exchange messages regarding facts currently
in their working memory. The exchange of information between nodes is modelled as
an abstract Copy operation: if a fact A is in node i’s working memory in state s and A
is not in the working memory of node j, then in the successor state s′, A can be added
to node j’s working memory. Intuitively, this corresponds to the following operations



Time Node 1 Node 2
t0 {A1, A2, A3, A4} {A5, A6, A7, A8}

operation: RuleB2 RuleB4
t1 {A1, A2, A3, A4, B2} {A5, A6, A7, A8, B4}

operation: RuleB1 RuleB3
t2 {A1, A2, A3, A4, B1, B2} {A5, A6, A7, A8, B3, B4}

operation: RuleC1 RuleC2
t3 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C2}

operation: Idle Copy (C1 from node 1)
t4 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C1, C2}

operation: Idle RuleD1
t5 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C1, C2, D1}

Fig. 1. Example 1

rolled into one: j asking i for A, and i sending A to j. We assume copy operations are
guaranteed to succeed and take one tick of system time. A node can also perform an
Idle operation (do nothing).

A problem is considered to be solved if one of the nodes has derived the goal.
The time taken to solve the problem is taken to be the total number of steps by the
whole system (nodes firing their rules or copying facts in parallel, at most one operation
executed by each node at every step). This abstracts away from the cost of rule matching
etc. This assumption is made for simplicity and a single ‘tick’ can be replaced with a
numerical value reflecting real time taken by the system to fire a rule (worst case or
average). The amount of communication required to solve the problem is taken to be
the total number of copy operations performed by all nodes. Note that the only node
which incurs the communication cost is the node which performs the copy. As with our
model of time, the assumptions regarding communication are made for simplicity; it
is straightforward to modify the definition of communication so that, e.g., the ‘cost’ of
communication is paid by both nodes, communication takes more than one tick of time,
and communication is non-deterministic.

The execution of a distributed rule-based system can be modelled as a state transi-
tion system where states correspond to combined states of nodes (set of facts in each
node’s working memory) and transitions correspond to nodes performing actions in
parallel, where each node’s action is either a single rule firing, a copy action, or an idle
action.

As an example, consider a system of two nodes, 1 and 2. The nodes share the same
set of rules:

RuleB1 A1, A2 → B1 RuleB2 A3, A4 → B2

RuleB3 A5, A6 → B3 RuleB4 A7, A8 → B4

RuleC1 B1, B2 → C1 RuleC2 B3, B4 → C2

RuleD1 C1, C2 → D1

The goal is to deriveD1. Figure 1 gives a simple example of a run of the system starting
from a state where node 1 has A1, A2, A3 and A4 in its working memory, and node 2
hasA5, A6, A7, A8. In this example, the nodes require one copy operation and five time



steps to derive the goal. (In fact, this is an optimal use of resources for this problem, as
verified using model-checking, see section 4).

Throughout the paper, we will use variations on this synthetic ‘binary tree’ problem,
in which the Ais are the leaves and the goal is the root of the tree, as examples. We vary
the number of rules and the distribution of ‘leaf’ facts between the nodes. For example,
a larger system can be generated using 16 ‘leaf’ facts A1, . . . , A16, adding extra rules
to derive B5 from A9 and A10, etc., and a new goal E1 derivable from D1 and D2. We
will refer to this as a ‘16 leaf example’. We have chosen this sample problem because it
is typical of a class of distributed reasoning problems and can be easily parameterised
by the number of leaf facts and the distribution of facts and rules among the nodes.

3 Model-checking resource requirements

We are interested in verifying properties of the form ‘if the facts A1, . . . , An are as-
signed to the nodes of a distributed rule-based system in a particular way, the system
will (or will not) conclude Q in less than t timesteps and fewer than m messages’. In
general it is impractical to run the system and count steps and messages for all possible
interactions between the nodes to establish such properties. What is required is some
automated method of verifying such properties which considers all possible system
traces.

In this section, we show how the transition system representing a distributed rule-
based system can be encoded as an input to a model-checker to allow the automatic
verification of the properties expressing resource bounds. Model checking is an au-
tomated verification procedure in which the system to be verified is represented by a
(finite) model M for an appropriate logic, the property to be verified is represented by
a formula φ in the same logic, and the verification consists in computing whether M
satisfies φ [2]. Originally developed for hardware verification, it is increasingly being
applied to the verification of complex software systems. For the experiments reported
here, we have used the Mocha model checker [1], due to the ease with which we can
specify a system of concurrently executing communicating rule-based systems in reac-
tive modules, the description language used by Mocha.

In Mocha, the state of the system is described by a set of state variables and each
system state corresponds to an assignment of values to the variables. The presence or
absence of each fact in the working memory of a node is represented by a boolean
state variable niAj which encodes node i’s belief in fact Aj . The initial values of these
variables determines the initial distribution of facts between nodes. 1 In the experiments
reported below (which used the binary tree example introduced in the previous section,
all derived (non-leaf) variables were initialised to false, and only the allocation of leaves
to each node was varied.

The actions of firing a rule, copying a fact from another node and idling are encoded
as a Mocha atom which describes the initial condition and transition relation for a group

1 We can also leave the initial allocation of facts undetermined, and allow the model checker to
find an allocation which satisfies some property, e.g., that there is a derivation which takes less
than k steps. However for the experiments reported here, we specified the initial assignment
of facts to nodes.



of related state variables. Inference is implemented by marking the consequent of a rule
as present in working memory at the next cycle if all of the antecedents of the rule are
present in working memory at the current cycle. A rule is only enabled if its conse-
quent is not already present in working memory at the current cycle. Communication
is implemented by copying the value representing the presence of a fact in the working
memory of another node at the current cycle to the corresponding state variable in the
node performing the copy at the next cycle and incrementing a counter, ni counter, for
the node performing the copy. Copying is only enabled if the fact to be copied is not
already in the working memory of the node performing the copy. In the experiments,
we assumed that all rules are believed by all nodes in the initial state, and did not imple-
ment copying rules. However, this can be done in a straightforward way by adding an
extra boolean variable to the premises of each rule, and implementing copying a rule as
copying this variable. To express the communication bound, we use a counter for each
node which is incremented each time a copy action is performed by the node. To allow
a node to idle at any cycle, the atoms which update working memory in each node are
declared to be lazy.

Mocha supports hierarchical modelling through composition of modules. A module
is a collection of atoms and a specification of which of the state variables updated
by those atoms are visible from outside the module. In our encoding, each node is
represented by a module. A particular distributed rule-based system is then simply a
parallel composition of the appropriate node modules.

The evolution of the system’s state is described by an initial round followed by an
infinite sequence of update rounds. The variables are initialised to their initial values
in the initial round and new values are assigned to the variables in the subsequent up-
date rounds. At each update round, Mocha non-deterministically chooses between the
enabled rules and copy operations, and idling for each node.

The specification language of Mocha is ATL. We can express properties such as
‘node imay derive fact φ in k steps’ asEXkα, whereEXk isEX repeated k times, and
α is a state variable encoding of the fact that φ is present in node i’s working memory
(e.g. : α = niAj if φ = Aj). 2 To bound the number of messages used, we can include
a bound on the value of the message counter of one or more nodes in the property to
be verified. For example, the property ‘node i may derive fact φ in k steps using at
most one message’ can be encoded as EXk(α∧ c) where c is a boolean variable which
is true if ni counter < 2. To obtain the actual derivation, we can verify an invariant
which states that α is never true, and use the counterexample trace generated by the
model-checker to show how the system reaches the state where α is proved.

4 Experimental results

In this section we describe the results of experiments for different sizes of the binary
tree example and different distributions of leaves between the nodes. The experiments

2 In [3] we showed that, given a distributed reasoning system with m nodes, p propositional
variables, r propositional rules, and t the largest upper bound on the inference transition in
any node, the problem of whether such a temporal property φ is true in the system is decidable
in time O(|φ| × 2m(p+r) × tm).



were designed to investigate trade-offs between the number of steps and the number of
messages exchanged (a shorter derivation with more messages or a longer derivation
with fewer messages).

Case Node 1 Node 2 # steps # messages node 1 # messages node 2
1. A1–A8 7 – –
2. A1–A7 A8 6 0 3
3. A1–A7 A8 6 1 2
4. A1–A7 A8 7 1 1
5. A1–A7 A8 8 1 0
6. A1–A6 A7,A8 6 0 2
7. A1–A6 A7,A8 6 1 1
8. A1–A6 A7,A8 7 1 0
9. A1–A4 A5–A8 5 1 0
10. A1,A3,A5,A7 A2,A4,A6,A8 7 2 3
11. A1,A3,A5,A7 A2,A4,A6,A8 11 0 4

Table 1. Resource requirements for optimal derivation in 8 leaves cases

Table 1 shows the number of derivation steps and the number of messages for each
node for varying distributions of 8 leaves. Note that there are several optimal (non-
dominated) derivations for the same initial distribution of leaves between the nodes.
For example, when node 1 has all the leaves apart from A8, and node 2 has A8, the
obvious solution is case 5, which requires 1 message and 8 time units: node 1 copies
A8 from node 2, and then derives the goal in 7 inference steps. However, the nodes can
solve the problem in fewer steps by exchanging more messages. For example, case 2
describes the situation when node 2 copies A7 from node 1, while node 1 derives B3

(step 1). Then node 2 derives B4 while node 1 derives B2 (step 2). Then node 2 copies
B3 from node 1, while node 1 derives B1 (step 3). At the next step node 1 derives C1

and node 2 derives C2 (step 4). Then node 2 copies C1 from node 1 (step 5) and node
1 idles; finally at step 6 node 2 derives D1. This derivation requires 6 time steps and
3 messages. The trade-off between steps and messages varies with the distribution, as
can be seen in cases 10 and 11: if node 1 has all the odd leaves and node 2 all the even
leaves, then to derive the goal either requires 7 steps and 5 messages, or 11 steps and 4
messages.

Similar trade-offs are apparent for a problem with 16 leaves, as shown in Table 2.
However in this case there are a larger number of possible distributions of leaves, and,
in general, more trade-offs for each distribution. The trade-offs are also more dramatic,
for example in the ‘odd and even’ case (cases 20 and 21), where node 1 has all the odd
leaves and node 2 all the even leaves, increasing the message bound by 1 reduces the
length of the derivation by 10 steps.

Although these examples are very simple, they point to the possibility of complex
trade-offs between time and communication bounds in distributed rule-based systems.
For more complex examples, we would anticipate that such trade-offs would be harder
to predict a priori, and our framework would be of correspondingly greater utility.



Case Node 1 Node 2 # steps # copy 1 # copy 2
1. A1–A16 15 – –
2. A1–A15 A16 12 0 6
3. A1–A15 A16 12 1 4
4. A1–A15 A16 13 1 3
5. A1–A15 A16 14 1 2
6. A1–A15 A16 15 1 1
7. A1–A15 A16 16 1 0
8. A1–A14 A15,A16 11 0 5
9. A1–A14 A15,A16 11 1 4
10. A1–A14 A15,A16 12 1 3
11. A1–A14 A15,A16 13 1 2
12. A1–A14 A15,A16 14 1 1
13. A1–A14 A15,A16 15 1 0
14. A1–A12 A13,A14,A15,A16 11 0 4
15. A1–A12 A13,A14,A15,A16 11 1 2
16. A1–A12 A13,A14,A15,A16 12 1 1
17. A1–A12 A13,A14,A15,A16 13 1 0
18. A1–A3,A5–A7,A9–A11,A13–A15 A4,A8,A12,A16 13 2 6
19. A1–A3,A5–A7,A9–A11,A13–A15 A4,A8,A12,A16 19 4 0
20. A1,A3,A5,A7,A9,A11,A13,A15 A2,A4,A6,A8,A12,A14,A16 13 4 5
21. A1,A3,A5,A7,A9,A11,A13,A15 A2,A4,A6,A8,A12,A14,A16 23 0 8

Table 2. Resource requirements for optimal derivation in 16 leaves cases

5 Related work

The upper limit on deliberation (or response) time in rule-based systems is a well-
established problem. However previous work has studied expert and diagnostic sys-
tems as single isolated systems [4], and has focused mainly on termination (or worst
case response time), rather than more general issues of resource bounds, and trade-offs
between time and communication resources.

There exists considerable work on the execution properties of rule based systems,
both in AI and in the active database community. In AI, perhaps the most relevant
work on the execution properties of rule based systems is that of Cheng and co-workers
on predicting the response time of OPS5-style production systems. For example, in
[5], Chen and Cheng show how to compute the response time of a rule-based program
in terms of the maximum number of rule firings and the maximum number of basic
comparisons made by the Rete network. In [6], Cheng and Tsai describe a tool for
detecting the worst-case response time of an OPS5 program by generating inputs which
are guaranteed to force the system into worst-case behaviour, and timing the program
with those inputs. However the results obtained using these approaches are specific to
a particular rule-based system (OPS5 in this case) and cannot easily be extended to
systems with different rule formats or rule execution strategies. Nor are they capable of
dealing with the asynchronous inputs found in communicating RBSs.

Another relevant strand of work is the problem of termination and query bound-
edness in deductive databases [7]. However, again this work considers a special (and



rather restricted with respect to rule format and execution strategy) class of rule-based
systems. In our previous work, e.g., [8, 9] we have investigated time vs. memory trade-
offs for single (rule-based and resolution) reasoners, and in [10], we investigated re-
source requirements for time, memory and communication for systems of distributed
resolution reasoners. In [3] we showed how durations can be assigned to the various
stages of the inference cycle (matching, conflict resolution etc.) and how abstraction
techniques can be used to model sets of individual rule firings into a single abstract
transition with associated upper and lower time bounds.

6 Conclusions

In this paper, we proposed an approach to modelling and verifying resource require-
ments of distributed rule-based systems. We described results of experiments on a syn-
thetic example which show interesting trade-offs between time required by the nodes
in a distributed rule-based system to solve the problem and the number of messages
they need to exchange. The paper presents initial results of a long-term research pro-
gramme. In future work, we plan to evaluate our approach on real-life examples of
rule-based systems.
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