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Abstract. The AgentSpeak agent-oriented programming language has recently
been extended with various new features, such as speech-act based communica-
tion, internal belief additions, and support for reasoning with ontological knowl-
edge, which imply the need for belief revision within an AgentSpeak agent. In this
paper, we show how a polynomial-time belief-revision algorithm can be incorpo-
rated into the Jason AgentSpeak interpreter by making use of Jason’s language
constructs and customisation features. To the best of our knowledge, this is the
first attempt to include belief revision within an interpreter for a practical agent
programming language.

1 Introduction

After almost a decade of work on abstract programming languages for multi-agent sys-
tems, practical multi-agent platforms based on these languages are now beginning to
emerge. One example of a well-known agent language that has evolved to the point of
being sufficiently practical for widespread use is AgentSpeak, and in particular its im-
plementation in Jason [7]. A number of extensions to AgentSpeak have been reported
in the literature and incorporated in Jason. Some of these new features, such as speech-
act based communication, internal belief additions, and support for reasoning with on-
tological knowledge, have led to a greater need for belief revision as part of the agent’s
reasoning cycle. However, in common with other mature agent-oriented programming
languages [5], Jason does not currently provide automatic support for belief revision.
The current implementation provides a simple form of belief update, which can be cus-
tomised for particular applications. However, the problem of belief-base consistency
has, so far, remained the responsibility of the programmer.

The lack of support for belief revision in practical agent programming languages is
understandable, given that known belief revision algorithms have high computational



complexity bounds. However recent work by Alechina et al. [2] has changed this pic-
ture. By making simplifying assumptions which are realistic for agent-oriented pro-
gramming languages, they were able to define polynomial-time belief-revision algo-
rithm, which is theoretically well-motived, in the sense of producing revisions which
conform to a generally accepted set of postulates characterising rational belief revision.
In this paper, we show how this work can be incorporated into the Jason AgentSpeak
interpreter by making use of Jason’s language constructs and customisation features.
To the best of our knowledge, this is the first attempt to include belief-revision within
an interpreter for a practical agent programming language. 4

The remainder of the paper is organised as follows. In the sections 2 and 3 we give
a brief overview of the AgentSpeak programming and its implementation in Jason. In
section 4, we state our desiderata for belief revision in AgentSpeak, and in section 5
we summarise the main points of the algorithm first introduced in [2]. We then discuss
the integration of the belief revision algorithm into Jason in Section 6, while Section 7
gives a simple example which illustrates the importance of belief revision in practical
programming of multi-agent systems. Finally, we discuss conclusions and future work.

2 AgentSpeak

The AgentSpeak(L) programming language was introduced in [19]. It is based on logic
programming and provides an elegant abstract framework for programming BDI agents.
The BDI architecture is, in turn, the predominant approach to the implementation of
intelligent or rational agents [24], and a number of commercial applications have been
developed using this approach.

An AgentSpeak agent is defined by a set of beliefs giving the initial state of the
agent’s belief base, which is a set of ground (first-order) atomic formulæ, and a set of
plans which form its plan library. An AgentSpeak plan has a head which consists of a
triggering event (specifying the events for which that plan is relevant), and a conjunc-
tion of belief literals representing a context. The conjunction of literals in the context
must be a logical consequence of that agent’s current beliefs if the plan is to be con-
sidered applicable when the plan is triggered (only applicable plans can be chosen for
execution). A plan also has a body, which is a sequence of basic actions or (sub)goals
that the agent has to achieve (or test) when the plan is triggered. Basic actions represent
the atomic operations the agent can perform so as to change the environment. Such ac-
tions are also written as atomic formulæ, but using a set of action symbols rather than
predicate symbols. AgentSpeak distinguishes two types of goals: achievement goals
and test goals. Achievement goals are formed by an atomic formulæ prefixed with the
‘!’ operator, while test goals are prefixed with the ‘?’ operator. An achievement goal
states that the agent wants to achieve a state of the world where the associated atomic
formulæ is true. A test goal states that the agent wants to test whether the associated
atomic formulæ is (or can be unified with) one of its beliefs.

An AgentSpeak agent is a reactive planning system. Plans are triggered by the ad-
dition (‘+’) or deletion (‘-’) of beliefs due to perception of the environment, or to the

4 Some initial considerations on belief revision in an abstract programming language appear, for
example, in [21].



addition or deletion of goals as a result of the execution of plans triggered by previous
events.

A simple example of an AgentSpeak program for a Mars robot is given in Figure 1.
The robot is instructed to be especially attentive to “green patches” on rocks it observes
while roving on Mars. The AgentSpeak program consists of three plans. The first plan
says that whenever the robot perceives a green patch on a certain rock (a belief addition),
it should try and examine that particular rock. However this plan can only be used (i.e.,
it is only applicable) in the robot’s batteries are not too low. To examine the rock, the
robot must retrieve, from its belief base, the coordinates it has associated with that
rock (this is the test goal in the beginning of the plan’s body), then achieve the goal of
traversing to those coordinates and, once there, examining the rock. Recall that each of
these achievement goals will trigger the execution of some other plan.

+green patch(Rock) :
not battery charge(low) <-

?location(Rock,Coordinates);
!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords) :
safe path(Coords) <-

move towards(Coords).

+!traverse(Coords) :
not safe path(Coords) <-

...

Fig. 1. Examples of AgentSpeak Plans for a Mars Rover

The two other plans (note the last one is only an excerpt) provide alternative courses
of action that the rover should take to achieve a goal of traversing towards some given
coordinates. Which course of action is selected depends on its beliefs about the environ-
ment. If the rover believes that there is a safe path in the direction to be traversed, then
all it has to do is to take the action of moving towards those coordinates (this is a basic
action which allows the rover to effect changes in its environment). The alternative plan
(not shown here) provides an alternative means for the agent to reach the rock when the
direct path is unsafe.



3 Jason

The Jason interpreter implements the operational semantics of AgentSpeak as given in,
e.g., [8]. Jason is written in Java, and its IDE supports the development and execution
of distributed multiagent systems [6].5 Some of the features of Jason are:

– speech-act based inter-agent communication (and annotation of beliefs with infor-
mation sources);

– annotations on plan labels, which can be used by elaborate (e.g., decision theoretic)
selection functions;

– the possibility to run a multi-agent system distributed over a network (using SACI
or other middleware);

– fully customisable (in Java) selection functions, trust functions, and overall agent
architecture (perception, belief-revision, inter-agent communication, and acting);

– straightforward extensibility (and use of legacy code) by means of user-defined
“internal actions”;

– clear notion of multi-agent environments, which can be implemented in Java (this
can be a simulation of a real environment, e.g., for testing purposes before the
system is actually deployed).

3.1 Extensions to AgentSpeak

Recent work appearing in the literature has made important additions to AgentSpeak,
which have also been (or are in the process of being) implemented in Jason. Below we
briefly discuss some of these features, focusing on those that have particular implica-
tions for belief revision.

Belief additions One of the earliest additions to the AgentSpeak language is one of
the most important from the point of view of belief revision. From the initial work on
AgentSpeak, experience showed that it was often the case that the execution of some
plans could be greatly facilitated by allowing plan executions to add derived beliefs to
the agent’s belief base. A formula such as +bl in the body of a plan, has the effect of
adding the belief literal bl to the belief base. Together with the ability to exchange plans
with other agents (see below), such derived beliefs can result in the agent’s belief base
becoming inconsistent (i.e., both b and b̃ are in the belief base, for some belief b)6

Unless the programmer intends to use paraconsistency, this is clearly undesirable, but
is not currently checked by Jason automatically.

Speech-act based communication and plan exchange Another important addition, first
proposed in [14], is the extension of the AgentSpeak operational semantics to allow
speech-act based communication among AgentSpeak agents, This gave semantics to
the change in the mental attitudes of AgentSpeak agents when receiving messages from

5 Jason is Open Source (GNU LGPL) and is available from http://jason.
sourceforge.net

6 ’˜’ denotes strong negation in Jason.



other agents. This includes not only changes in beliefs and goals, but also the plans
used by the agent. This allows agents to exchange know-how with other agents in the
form of plans as for dealing with specific events [3]. The intuitive idea is that if one
does not know how to do something, one should ask someone who does. However, to
systematise this idea, hence introducing the possibility of cooperation among agents, it
was necessary not only the means for the retrieval of external plans for a given triggering
event for which the agent has no applicable plan, but also to annotate plans with access
specifiers (to prevent private plans being accessed by other agents), and to specify what
the agent should do with the retrieved plan once it has been used for a particular event
(e.g., discard, or keep it in the plan library for future reference).

Ontological reasoning In [15], an extension of AgentSpeak was proposed which aimed
at incorporating ontological reasoning within the AgentSpeak interpreter. The language
was extended so that the belief base may include Description Logic [4] operators; the
extended language was called AgentSpeak-DL. In addition to the usual ABox (factual
knowledge in the form of ground atomic formulæ), the belief base now also has a TBox
(containing definitions of complex concepts and relationships between them). This re-
sults in a number of changes in the interpretation of AgentSpeak programs: (i) queries
to the belief base are more expressive as their result do not depend only on explicit
knowledge but can be inferred from the ontology; (ii) the notion of belief update is re-
fined so that a property about an individual can only be added if the resulting belief base
is consistent with the concept description; (iii) the search for a plan (in the agent’s plan
library) that is relevant for dealing with a particular event is more flexible as this is not
based solely on unification, but also on the subsumption relation between concepts; and
(iv) agents may share knowledge by using web ontology languages such as OWL. The
importance of belief revision in the context of ontological reasoning is apparent (e.g.,
item (ii) above), and is another motivation for the work presented here.

Although AgentSpeak-DL is not yet available in the latest release of Jason, we
briefly outline how our work on belief revision will combine with the ongoing imple-
mentation of AgentSpeak-DL. In Jason, the abstract language presented in [15] will
take the following more practical form. We will represent ontological knowledge in
OWL Lite− [9], or in the form of Horn clauses. Interestingly, the OWL Lite− language
was created precisely so that any ontology thus defined could be translated into Datalog,
hence efficient query answering could be done based on logic programming techniques.
Unlike in the abstract language used in [15], we will not be able to state a definition such
as

presenter ≡ invitedSpeaker � paperPresenter.

(the best that we can do here are definitions such as invitedSpeaker � presenter
and paperPresenter � presenter). On the other hand, we will be able to express
ontology rules [12] which are not expressible in description logic.

Belief annotations Another important change in the version of AgentSpeak interpreted
by Jason is that atomic formulæ now can have “annotations”. An annotation is a list of
terms enclosed in square brackets immediately following a predicate. For example, the
annotated belief “green patch(r1)[doc(0.9)]” could be used by a program-
mer to represent that rock r1 is believed to have a green patch with a degree of certainty



of 0.9. Within the belief base, an important use of annotations is to record the sources of
information for a particular belief, and a (pre-defined) term source(s) is provided for
that purpose. s can be an agent’s name (to denote the agent that has communicated that
information), or two special atoms, percept and self, which denote that a belief
arose from perception of the environment or from the agent explicitly adding a belief to
its own belief base as a result of executing a plan, respectively. The initial beliefs that
are part of the source code of an AgentSpeak agent are assumed to be internal beliefs
(i.e., as if they had a [source(self)] annotation), unless the belief has any explicit
annotation given by the user (this could be useful if the programmer wants the agent to
have an initial belief as if it had been perceived from the environment, or as if it had
been communicated by another agent). For more on the annotation of sources of infor-
mation for beliefs, see [14]. As we will see below, annotations can be used to support
context sensitive belief revision, where beliefs of a particular type or from a particular
source are preferred to others when an inconsistency arises.

3.2 Belief update in Jason

Users can customise certain aspects of the cognitive functioning of a Jason agent by
overriding methods of the Agent. This includes, for example, the three user-defined
selection functions that are required by an AgentSpeak interpreter. One of the methods
of the Agent class that can be overridden, which is of interest here, is the brf() method.
This represents the belief revision function commonly found in agent architectures. To
create a customised agent class which overrides the brf method (e.g., to include a more
sophisticated algorithm than the standard one distributed with Jason), the following
method needs to be overridden7:

public class MyAgent extends Agent {

public List[] brf(List adds, List dels) {
// This function should revise the belief base
// with the given literals to add and delete

// In its return, List[0] has the list of actual
// additions to the belief base, and List[1] has
// the list of actual deletions; this is used to
// generate the appropriate internal events

}
}

In the current Jason implementation, the brf method is used both for belief revision
and belief update (i.e., perception of the environment is followed by a call to this func-
tion with literals representing the percepts in the adds parameter). For belief update
following perception, it is assumed that all perceptible properties are included in adds:
all current beliefs no longer within the list of percepts are deleted, and all percepts not
currently in the belief base are added.8 For belief revision, the default brf method in
Jason simply adds to the belief base any belief addition executed within a plan, as well

7 Note that the signature of the brf method as given below is different from what is currently
available in Jason, but this is how it will be in the next public release.

8 The fact that a literal is a percept rather than other forms of information is explicitly stated in
the annotations: all percepts have a source(percept) annotation.



as any information from trusted sources (note, however, that the source is annotated in
the belief base, so in practice further consideration of the degree of trust in any belief
can be taken by the programmer). At present, belief additions and communicated be-
liefs are not checked for consistency, with the result that the belief base can become
inconsistent.

4 Requirements for belief revision in AgentSpeak

We have two main objectives in our introduction of belief revision in AgentSpeak. First
the algorithm should be theoretically well motived, in the sense of producing revisions
which conform to a generally accepted set of postulates characterising rational belief
revision. Second, we want the resulting language to be practical, which means that the
belief revision algorithm must be efficient. Our approach draws on recent work [2]
on efficient (polynomial-time) belief revision algorithms which satisfy the well-known
AGM postulates [1] characterising rational belief revision and contraction.

The theory of belief revision as developed by Alchourron, Gärdenfors and Makin-
son in [10, 1, 11] models belief change of a idealised rational reasoner. The reasoner’s
beliefs are represented by a potentially infinite set of beliefs closed under logical conse-
quence. When new information becomes available, the reasoner must modify its belief
set to incorporate it. The AGM theory defines three operators on belief sets: expansion,
contraction and revision. Expansion, denoted K + A, simply adds a new belief A to
K and the resulting set is closed under logical consequence. Contraction, denoted by
K

.− A, removes a belief A from from the belief set and modifies K so that it no longer
entails A. Revision, denoted K

.
+ A, is the same as expansion if A is consistent with

the current belief set, otherwise it minimally modifies K to make it consistent with A,
before adding A.

Contraction and revision cannot be defined uniquely, since in general there is no
unique maximal set K ′ ⊂ K which does not imply A. Instead, the set of ‘rational’
contraction and revision operators is characterised by the AGM postulates [1]. Below
Cn(K) denotes closure of K under logical consequence.

The basic AGM postulates for contraction are:

(K .−1) K
.− A = Cn(K .− A) (closure)

(K .−2) K
.− A ⊆ K (inclusion)

(K .−3) If A /∈ K , then K
.− A = K (vacuity)

(K .−4) If not � A, then A /∈ K
.− A (success)

(K .−5) If A ∈ K , then K ⊆ (K .− A) + A (recovery)
(K .−6) If Cn(A) = Cn(B), then K

.− A = K
.− B (equivalence)

AGM style belief revision is sometimes referred to as coherence approach to belief
revision, because it is based on the ideas of coherence and informational economy. It
requires that the changes to the agent’s belief state caused by a revision be as small
as possible. In particular, if the agent has to give up a belief in A, it does not have to
give up believing in things for which A was the sole justification, so long as they are
consistent with the remaining beliefs.



AGM belief revision is generally considered to apply only to idealised agents, be-
cause of the assumption that the set of beliefs is closed under logical consequence. To
model AI agents, an approach called belief base revision has been proposed (see for ex-
ample [13, 16, 22, 20]). A belief base is a finite representation of a belief set. Revision
and contraction operations can be defined on belief bases instead of on logically closed
belief sets. However the complexity of these operations ranges from NP-complete (full
meet revision) to low in the polynomial hierarchy (computable using a polynomial num-
ber of calls to an NP oracle which checks satisfiability of a set of formulas) [18]. The
reason for the high complexity is the need to check for classical consistency while per-
forming the operations. One way around this is to weaken the language and the logic of
the agent so that the consistency check is no longer an expensive operation (as suggested
in [17]). This is the approach taken in [2] and adopted here.

The ‘language’ of an AgentSpeak agent is weaker than the language of full classical
logic (the belief base contains only literals) and the deductions the agent can make
are limited to what can be expressed as plans (and, for example, ontology rules). We
introduce belief revision operators in AgentSpeak which satisfy all but one of the AGM
postulates (recovery is not satisfied), but the logical closure Cn in the postulates is
interpreted as closure with respect to a logic which is weaker than full classical logic.
This allows us to define theoretically sound, but efficient belief revision operations.

Another strand of theoretical work in belief revision is the foundational, or reason-
maintenance style approach to belief revision. Reason-maintenance style belief revi-
sion is concerned with tracking dependencies between beliefs. Each belief has a set of
justifications, and the reasons for holding a belief can be traced back through these jus-
tifications to a set of foundational beliefs. When a belief must be given up, sufficient
foundational beliefs have to be withdrawn to render the belief underivable. Moreover, if
all the justifications for a belief are withdrawn, then that belief itself should no longer be
held. Most implementations of reason-maintenance style belief revision are incomplete
in the logical sense, but tractable.

In the next section we present an approach to belief revision and contraction for
resource-bounded agents which is a synthesis of AGM and reason-maintenance style
belief revision.

5 The Belief Revision Algorithm

In this section we briefly describe the linear-time contraction algorithm introduced in
[2]. In [2], resource-bounded contraction by a literal A is defined as the removal of A
and sufficient literals from the agent’s belief base so that A is no longer derivable.

Assume that the agent’s belief base is a directed graph, where the nodes are beliefs
and justifications. A justification consists of a belief and a support list containing the
context (and possibly the triggering event) of the plan used to derive this belief: for
example, (A, [B, C]), where A is a derived belief and it was asserted by a plan with
context B and triggering belief addition C (or derived by an ontology rule B, C → A).
Foundational beliefs which were not derived, have a justification of the form (D, []). In
the graph, each justification has one outgoing edge to the belief it is a justification for,
and an incoming edge from each belief in its support list. We assume that each support



list s has a designated least preferred member w(s). Intuitively, this is a belief which
is not preferred to any other belief in the support list, and which we would be prepared
to discard first, if we have to give up one of the beliefs in the list. We discuss possible
preference orderings and their computation in the next section. We assume that we have
constant time access to w(s).

For each of A’s outgoing edges
to a justification (C, s),
remove (C,s) from the graph.

For each of A’s incoming edges
from a justification (A, s),

if s is empty:
remove (A, s);

else:
contract by w(s);

Remove A.

To implement reason-maintenance type contraction, we also remove beliefs which have
no incoming edges.

In [2], it was shown that the contraction operator defined by the algorithm satisfies
(K .−1)–(K .−4) and (K .−6). The agent’s beliefs are closed under logical consequence in
in a logic W which has a single inference rule, generalised modus ponens:

δ(A1), . . . , δ(An), ∀x̄(A1 ∧ . . . ∧ An → B)
δ(B)

where δ is a substitution function which replaces all free variables of A1∧. . .∧An → B
with constants.

The algorithm runs in time O(kr+n), where r is the number of plans, k the maximal
number of beliefs in any support list, and n the number of literals in the belief base [2].

5.1 Preferred contractions

In general, an agent will prefer some contractions to others. In this section we focus on
contractions based on preference orders over individual beliefs, e.g., degree of belief or
commitment to beliefs.

We distinguish independent beliefs, beliefs which have at least one non-inferential
justification (i.e., a justification with an empty support), such as observations and the
literals in the belief base when the agent starts. We assume that an agent associates
an a priori quality with each non-inferential justification for its independent beliefs.
For example, communicated information may be assigned a degree of reliability by its
recipient which depends on the degree of reliability of the speaker; percepts may be
assumed to be more reliable than communicated information and so on. For simplicity,
we assume that quality of a justification is represented by non-negative integers in the
range 0, . . . , m, where m is the maximum size of the belief base. A value of 0 means



lowest quality and m means highest quality. We take the preference of a literal A, p(A),
to be that of its highest quality justification:

p(A) = max{qual(j0), . . . , qual(jn)},

where j0, . . . , jn are all the justifications for A, and define the quality of an inferential
justification to be that of the least preferred belief in its support: 9

qual(j) = min{p(A) : A ∈ support of j}.

This is similar to ideas in argumentation theory: an argument is only as good as its weak-
est link, yet a conclusion is at least as good as the best argument for it. This approach
is also related to Williams ‘partial entrenchment ranking’ [23] which assumes that the
entrenchment of any sentence is the maximal quality of a set of sentences implying it,
where the quality of a set is equal to the minimal entrenchment of its members. While
this approach is intuitively appealing, nothing hangs on it, and any preference order
over literals is consistent with the postulates. To perform a preferred contraction, we
preface the contraction algorithm given above with a step which computes the prefer-
ence of each literal in the belief base, and for each justification, finds the position of a
least preferred member of support. The preference computation algorithm can be found
in [2].

We then simply run the contraction algorithm, to recursively delete the weakest
member of each support in the dependencies graph of A.

We define the worth of a set of literals as worth(Γ ) = max{p(A) : A ∈ Γ}. In
[2] it was shown that the contraction algorithm removes the set of literals with the least
worth. More precisely:

Proposition 1. If contraction of the set of literals in the belief base K by A resulted in
removal of the set of literals Γ , then for any other set of literals Γ ′ such that K − Γ ′

does not imply A, worth(Γ ) ≤ worth(Γ ′).

The proof is given in [2]. Computing preferred contractions involves only modest com-
putational overhead. The total cost of computing the preference of all literals in the
belief base is O(n log n + kr), where r is the number of plans, k the maximal number
of beliefs in any support list, and n the number of literals in the belief base. As the con-
traction algorithm is unchanged, this is also the additional cost of computing a preferred
contraction. Computing the most preferred contraction can therefore be performed in
time linear in kr + n.

5.2 Revision

In the previous sections we described how to contract by a belief. Now let us consider
revision, which is adding a new belief in a manner which does not result in an inconsis-
tent set of beliefs.

9 Literals with no supports (as opposed to an empty support) are viewed as having an empty
support of lowest quality.



If the agent is a reasoner in classical logic, revision is definable in terms of con-

traction and vice versa using Levi identity K
.
+

df
= (K .− ¬A) + A and Harper identity

K
.− A

df
= (K

.
+ ¬A) ∩ K (see [11]).

However, revision and contraction are not inter-definable in this way for an agent
which is not a classical reasoner, in particular, a reasoner in a logic for which it does
not hold that K + A is consistent if, and only if, K � ¬A. If we apply the Levi identity
to the contraction operation defined earlier, we will get a revision operation which does
not satisfy the belief revision postulates. One of the reasons for this is that contracting
the agent’s belief set by ¬A does not make this set consistent with A, so (K .− ¬A)+A
may be inconsistent.

Instead, we define revision of the set of literals in the belief base K by A as (K +
A) .− ⊥ (add A, close under consequence and eliminate all contradictions).

Algorithm: revision by A

Add A to K;
apply all matching plans;

while there is a pair (B, ˜B) in K:
contract by the least preferred member of the pair

In [2], it is shown that this definition of revision satisfies all but one basic AGM postu-
lates for revision.

6 Belief Revision in Jason

Future releases of Jason will include an alternative definition of the brf() method dis-
cussed in Section 3.2 which implements the belief revision algorithm presented above.
A belief addition passed to this new implementation may be discarded (as at present)
or may result in the deletion of some other belief(s) in order to allow the new belief to
be consistently added to the belief base. Which beliefs are deleted is determined by a
user-specified preference order (see below).

The only addition to the AgentSpeak interpreter code necessary to facilitate the im-
plementation of the belief revision algorithm, was to explicitly include in any internal
belief change, the label of the plan that executed the belief change. For example, if at
a particular reasoning cycle, the intended means (i.e., plan instance) chosen for execu-
tion is “@p1 te : ct <- +b.”, the belief b is annotated with “plan("@p1")” (in
addition to source(self) as previously) before adding b to the belief base.

The graph used by the belief revision algorithm is implemented in terms of two
lists for each belief: the “dependencies list” (the literals that allowed the derivation of
the belief literal in question), and the “justifies list” (which other beliefs the literal in
question justifies, that is, it appears in their dependencies list).10 Each belief to be added

10 Note that the “dependencies” and “justifies” lists are associated with each unique belief, i.e.,
a ground belief atom and the annotations with which it is asserted into the belief base, rather
than the internal Jason representation of the belief which holds all annotations for a given
ground belief atom in a single list.



has an annotation “plan()” recording the label of the plan instance that generated it,
which can be used to retrieve the the necessary information regarding the antecedents
of the belief from the intention stack. For example, if the plan that generated the be-
lief change, say +bl, has the form “@p te : l1 & ...& ln <- bd”, where te is a
triggering event and bd a plan body, the support list of the justification is simply the
ground literals from the plan context, “[l1,. . . ,ln]”. Note that if the triggering event, te,
is itself a belief addition, the literal in te is included together with the context literals
in the support list. Further, for each literal l1, . . . , ln (recall they are all currently in the
belief base), we add the justification to the literal’s “justifies” list. We also record the
time at which the justification was added to the relevant list.

In addition to the “dependencies” and “justifies” lists, the belief revision algorithm
also requires the definition of a partial order relation specifying contraction preference.
To allow for user customisation, this is defined as a separate method that can also be
overridden. The default definition of this method gives preference to perceived infor-
mation over communicated information (as also happens in [21]), and in case of in-
formation from similar sources, it gives preference to newer information over older
information (this is why the time of addition is also annotated in the individual belief
literals).

The implementation described above is conservative in revising only the agent’s
belief state. The agent’s plans are considered part of the agent’s program and are not
revised (though revising, e.g., plans received from other agents would be an interesting
extension). Similarly, when revising beliefs derived using ontological rules, we assume
the ontology used by the agent to be immutable and consistent and that it is consis-
tent with every other ontology it references. Moreover, intention revision remains the
responsibility of the programmer. Changes in the agent’s intentions following the re-
moval of beliefs to restore consistency must be programmed using the appropriate Ja-
son mechanisms. All belief changes, regardless of whether they are internal, communi-
cated, or perceived can lead to the execution of a plan which could, for example, be used
to drop an intention. If the belief revision algorithm has to remove any beliefs to ensure
consistency, this will also generate an internal event that can trigger the execution of a
a plan to revise the agent’s intentions.

7 An Example

To illustrate the importance of belief revision in the context of AgentSpeak, we present
a simple example of an agent that buys stocks from the stock market. The agent receives
financial information (or guesses) from other agents, some of which can be trusted (or
are currently considered trustworthy), and it also has access to Web Services which filter
relevant newspaper stories and provide symbolic versions of such news for stock market
agents. As these web services are authenticated, this corresponds to actual perception
of the “environment”.

Suppose our agent receives a message:

〈ag1, tell, salesUp(c1)〉
and its plan library has the following plan:



+salesUp(C)[source(A)]
: wellManaged(C) & trust(A)
<- +goodToBuy(C).

When the plan is executed, the brf() method will then add the following formula to the
belief base:

goodToBuy(c1)[ source(ag1) ]

with [salesUp(c1), wellManaged(c1), trust(ag1)] in its “dependen-
cies” list, and goodToBuy(c1) is added to the “justifies” lists of the beliefs
salesUp(c1), wellManaged(c1), and trust(ag1). In the context of the over-
all agent program, the idea is that if the agent ever comes to have the goal of buying
stocks, it can make use of beliefs such as goodToBuy, together with various other
conditions, to decide which stocks to buy.

Now assume that from the financial news Web Service, the agent acquires the belief
stocks(c2,10)[source(percept)], which means that company c2’s stocks
are up by 10 points, and the agent also believes that rival(c2,c1) (i.e., that com-
panies c2 and c1 are competitors), so that increase in the stocks of one of them tend to
lead to decrease in the other’s stocks. Assume further that the agent has another plan as
follows:

+stocks(C,P)
: P > 5 & rival(C,R)
<- +˜goodToBuy(R).

When the plan is executed, the attempt to simply add ˜goodToBuy(c1) to the belief
base would fail because it would result in an inconsistent belief state. With the avail-
able contraction preference relation, it is not difficult to see that in this instance, the
algorithm would contract goodToBuy(c1) because its support is based on commu-
nicated information which is less reliable than the observed information from which

˜goodToBuy(c1) was derived.
As can be seen, the belief revision algorithm takes care of ensuring that inconsisten-

cies such as (goodToBuy(c1)∧˜goodToBuy(c1)) never occur in the belief base.
Moreover, the data structures used by the algorithm (the dependency and justification
lists) allows it to automatically revise the belief base in ways that previously would re-
quire major programming efforts from the user. For example, suppose the agent receives
news that a crooked CEO has just been fired from c1. It might have a plan to update its
beliefs about c1 being well managed. If the user has chosen the reason-maintenance
style of the algorithm, and that there is no other justification for goodToBuy, then
the algorithm would remove not only the wellManaged(c1) belief, but also the
goodToBuy(c1) belief because the latter depends on the former. Similarly if for
some reason the agent finds out that ag1 is not trustworthy after all. With the user
choosing the coherence style of the algorithm, removing wellManaged would not
remove goodToBuy. Although in this example the reason-maintenance style is clearly
more adequate, in other applications the coherence style might be more useful. Without
the use of a belief revision algorithm, it would be very difficult for the programmer to
make sure (by including the appropriate plans or creating an application-specific brf()
method) that such kind of revision would occur appropriately at all times.



8 Conclusions and future work

As agent programming languages become richer, it becomes harder for the agent pro-
grammer to ensure that the belief states of agents developed using these languages are
consistent. In this paper we briefly summarised the rationale for including automatic be-
lief revision in an agent programming language. Using the AgentSpeak programming
language as an example, we showed how a number of features recently added to the
language dramatically increase the need for belief revision. We motived the choice of a
polynomial-time belief revision algorithm and described its integration into the Jason
AgentSpeak interpreter. We also gave a simple example which illustrates the utility of
such an automatic belief revision mechanism in a practical multi-agent system appli-
cation, and sketched how it can significantly reduce the programming effort required.
We believe that other agent-oriented programming languages and their platforms [5]
which currently push responsibility for maintaining a consistent belief state onto the
agent programmer, can also benefit from our approach.

We are aware of a number of limitations of the work presented here. In future work,
we plan to further explore the issue of the interaction of belief revision with the Ja-
son extension that allows beliefs to refer to OWL ontologies and extends unification
with ontological reasoning [15], and to address the issue the inferences that occur from
complex test goals. On the more practical side, we plan to develop large-scale agent
applications to assess the performance of Jason with belief revision.
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